Wakefield illustrations

30/10/2010
A.Grudiev
$5^{\text {th }}$ IASLC, Villars-sur-Ollon, CH

Bunch passage through the pillbox cavity

Courtesy of A. Candel

(SLAC)
 CLIC Two-Beam Accelerator

T3P Applications:

- Wakefield damping
- RF power transfer

Omega3P Applications:

- Trapped modes

Track3P Applications:

- Dark current

Pic3P Applications:

Accelerating structures

Compact Linear Collider two-beam accelerator unit

Courtesy of A. Candel (sLAc) Unstructured Mesh Model of PETS

CAD model courtesy CERN (May 09)

Courtesy of A. Candel
(sLACInternal View of PETS - Curved Mesh

Courtesy of A. Candel

(sLAc) \quad T3P - PETS Bunch Transit
Dissipation of wakefields in dielectric loads: eps=13, $\tan (d)=0.2$
 Gaussian bunch, sigma=2 mm, 2.5 mm horizontal offset

Courtesy of A. Candel

(SLAC) PETS Wakefield Convergence/Benchmarking
PETS (May 09), Loads: $\varepsilon_{\mathrm{r}}=13$, $\tan \delta=0.2$

Courtesy of A. Candel

(sLAc) CLIC TD24 Accelerating Structure

Broadband waveguide boundary conditions for T3P
 (recently implemented)

TDA24_vg1.8 CAD model courtesy CERN

Courtesy of A. Candel

(sLAC) T3P: TD24 Bunch Transit

Electric field magnitude shown, one half of the structure Electric boundary condition in vertical symmetry plane

Courtesy of A. Candel
(SLAC) T3P: Numerical Convergence
TD24.vg1.8

