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 HOM Mitigation 
Instructor: Roger M. Jones, University of Manchester/Cockcroft Institute, UK 

Purpose and Audience 
The purpose of the course is to enable students to become well-versed in the HOMs 
which give rise wakefield-beam interaction in accelerators and in particular to understand 
means of suppressing these HOMs. It is suitable for advanced undergraduates, graduate 
students and, active researchers in the field.  

Objectives 
This course will address the fundamentals of wakefields and their relation to the beam 
impedance. The features of both long-range and short-range wakefields will be discussed. 
Circuit models of relativistic electron beams coupled to multiple accelerator cavities will 
be developed to calculate the coupled modal frequencies. Practical methods to suppress 
the wakefields will be described with techniques taken from ongoing research (L-band 
and X-band linacs in particular). Throughout the course, basic physical principles such as 
superposition, energy conservation and causality will be emphasized. 

Instructional Method  
The will be two lectures.  A homework assignment will be available. 

Course Content  
The progress of multiple bunches of electrons through a linear or circular accelerator 
gives rise to a trailing electromagnetic field. This wakefield can have catastrophic 
consequences if its progress is left unchecked as the beam can become unstable and 
develop a BBU (Beam Break Up) instability. This course discusses issues associated with 
wakefields and means of damping the fields to acceptable levels. Examples are taken 
from the recent international next generation linear colliders damping schemes.  

Essential Reading 
R. M. Jones, Wake field Suppression in High Gradient Linacs for Lepton Linear 
Colliders, Phys. Rev. ST Accel. Beams 12, 104801, 2009. 

Background Reading  
RF Linear Accelerators, Wiley & Sons Publishers (1998), by Thomas Wangler  
“RF Superconductivity for Accelerators”, Wiley Publishers (1998), by Hasan Padamsee, 
Jens Knobloch and Tom Hays 
Physics of Collective Beam Instabilities in High Energy Accelerators (free pdf download 
) , Wiley & Sons Publishers (1993) by Alexander Chao  
The Physics of Particle Accelerators: An Introduction, Oxford University Press (2000) by 
Klaus Wille 
Fundamentals of Beam Physics, Oxford University Press (2003) by James Rosenzweig 
“Particle Accelerator Physics I & II”, (study edition) Springer-Verlag (2003) by Helmut 
Wiedeman 
Impedances and Wakes in High Energy Particle Accelerators, World Scientific 
Publishers (1998), by Bruno W Zotter and Semyon Kheifets 

http://www.slac.stanford.edu/%7Eachao/wileybook.html�
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2010 CAS Lecture Series: 
 

HOM MITIGATION  
  

Dr. Roger M. Jones, 
University of Manchester, UK/ 

Cockcroft Institute, UK 
 

 
In this course, wakefields are analyzed and practical structures which limit emittance 
growth are demonstrated.  A familiarity with fundamental concepts of accelerator physics 
is assumed.  Basic features of wakefields are outlined and detailed results on wakefield 
minimization and beam diagnostics based on the ILC (International Linear Collider) 
superconducting L-band linacs are described together with the features of X-band normal 
conducting linacs. 
 

1. Part I:  Basic concepts and definitions are introduced.   The features of short-
range and long-range wakefields are sketched out.    Resistive wall wake.  
Impedance and relation to wakefield. 
 

2. Part II:  Further general features of wakefields are described.  The wakes in both 
L-band (superconducting) and X-band (normal conducting) linacs are 
investigated.   Mode coupling issues that are likely to arise in the ILC main 
superconducting linacs are described.  A circuit model of the dipole wakefield is 
developed for moderate to heavily damped accelerator structures.   Interleaving 
the cell frequencies of adjacent structures is introduced as a means to combat 
insufficient fall-off in wakefields.   Manifold damped structures are modeled with 
a transmission-line combined with an L-C circuit model and the additional 
features (built-in BPM and structure alignment thorough monitoring of manifold 
radiation) of DDS (Damped Detuned Structures) are modeled in detail.   
Additional examples (if time permits) from crab cavities: HOMs, LOMs, SOMs 
mode simulation, beam dynamics and means to alleviate wake-field issue  
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OVERVIEW 
 
 

 The Transverse Wakefield Problem 
 

 Wakefield Definitions 
 

 Wakefield Examples and Methods of Calculation 
 

 Wakefield Fundamentals - 
Panofsky-Wenzel Theorem 

 
 Modal Sum Representation of Wakefield via Field 
Function Analysis (appendix) 

 
 R-L-C Circuit Model of Single Mode and 
Impedance-Wake Relations 

 
 Pill-Box Wake Function (short and Long-range 
wakes) 
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Introduction 

 
 

• In this course, we will focus on ultra relativistic 
beams.  The quantity under consideration has a 
finite value as the particle velocity approaches the 
velocity of light –often we will use v = c. 

 
• The bunch lengths under consideration are sub-

millimeter and even tens of microns (ILC, LCLS). 
 

• I will try to maintain S.I units throughout –for the 
sake of consistency.   
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General Properties of Wakefields 

 
 

• Longitudinal wakes give rise to energy spread over 
the train of bunches being accelerated. 
 

• Transverse wakes in high frequency linear 
accelerators (linacs), if left unchecked, can readily 
dilute the emittance of the beam. 

 
• Can give rise to instability that causes the beam to 

oscillate transversely –  
Beam Break Up (BBU) instability.   

 
• The instability that develops in a linac is a single 

pass instability.   
o In circular accelerators the effect is 

cumulative and the feedback mechanism 
amplifies the growth turn-by-turn.  The 
growth is ∝ exp(Γt)  

o We will analyze the growth effect in linacs. 
 

• It is crucial to damp the wakefields such they are 
not an issue!  
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• Or, why not try to make use of the trailing 
wakefield to accelerate beam?  Plasma wakefield 
accelerators are a possibility!  Plasma wakefield 
acceleration/focusing is ongoing research at SLAC. 

 
• In order to optimize the cost of acceleration high 

energy linacs accelerate multiple bunches of 
electrons/positrons within an rf pulse train.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



LECTURE 1 
HOM Mitigation Lecture 1, R.M. Jones, University of Manchester/Cockcroft Inst. (CAS RF Lecture Series 15-6-2010) 

-Page 7 of 74- 

Relativistic Point Charge in Free Space 
 

• A point at rest has an isotropic distribution of 
electric field 

 
 

• Consider point charge moving in the 
z-direction 

• For v~c then: γ>>1 and the field is 
squeezed in the longitudinal 

direction 
 

• The field is limited to a “pancake-
like” region and in the limit of v=c 
the field is entirely transverse (the 

pancake has zero angular spread) 
• The field for a particle moving with constant 

velocity is given by: 
 

                    03
0 *

q , H Y c4 R
= = ×

πε γ
R vE E    (1.1) 

 
where the vector R is drawn from the center of the 
charge q, to the observation point, 2 2 2 2

*R z r /= + γ , and 
2 21 v /cγ = − . 

 
r 3/2

2 2 2
0

q rE (z,r)
4 z r⎛ ⎞

⎜ ⎟
⎝ ⎠

γ=
πε γ +

   (1.2) 
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• In the pancake region, z~r/γ, or angle 1/γ: 
 

zr 0 2 2
0 0

q qE Z H ~ , E ~
4 r 4 rφ

γ=
πε πε

  (1.3) 

 
• No net power is transferred transverse to the 

particles motion, but there is a non-zero 
Poynting flux flowing parallel to the particle and 
attached to it 
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Plane Wave Fourier Decomposition 

 
 

• In the ultrarelativistic limit v->c the beam field is 
a plane wave electromagnetic field 

• We decompose the field by means the Fourier 
transform: 

 
 

ikz
r 12 2 23/2

2 2 2 0 0
0

q r qk q1 kr krE (z,r) dz e K F2 4 r 4 r4 z r

∞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎝ ⎠ ⎝ ⎠−∞

⎜ ⎟
⎝ ⎠

γ= = =γ γπ π ε γ π επε γ +
∫

(1.4) 
 
 
 

 
 

• The beam field is 
thus a superposition 
of plane waves with 
the spectrum F.  The 
spectral width is: 

k ~ / rΔ γ  
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Longitudinal Wake function  

And Loss Factor  

 
 

The energy lost by the charge q1 is given by the work 
done by the longitudinal e.m. force along the structure: 
 

11 l l l l l l l l l l l l lU F( ,z , ,z ;t).dz q ( ,z , ,z ;t) ( ,z , ,z ;t) .dz
∞∞

⎡ ⎤
⎢ ⎥⎣ ⎦−∞ −∞

⌠
⎮
⌡

= − =− + ×∫ r r E r r v B r r

(1.5) 
 

and this is evaluated at time t=z1/v.  The trailing charge 
changes its energy as it is influenced by field trailing the 
driving charge: 
 

21 1 1l l l lU F( ,z, ,z ;t).dz q ( ,z, ,z ;t) ( ,z, ,z ;t) .dz
∞∞

⎡ ⎤
⎢ ⎥⎣ ⎦−∞ −∞

⌠
⎮
⌡

= − =− + ×∫ r r E r r v B r r  (1.6) 

 
and this is evaluated at time t=z1/v+τ, where τ is the 
time delay between the driving and the witness bunch. 
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• A physical accelerator (a linac or an accelerator 
ring) is not infinite in length!    

• Providing the fields are confined within a given 
region and evanescent elsewhere then truncating 
the integral gives a very good approximation of the 
energy. 

 
• A real vacuum chamber, standing wave 

accelerator, etc is formed by smooth transitions in 
the geometry and has various devices inserted such 
as RF cavities, kickers, diagnostic components, etc.  
These devices perturb the fields.  Even with 
parallel computing  computer codes with relatively 
large amounts of memory one is never able to 
model the full set of accelerator components 
simultaneously. 

 
• In modeling the energy losses and impedance one 

models the individual components and sums the 
losses.  This is usually quite accurate unless 
significant modal distortion takes place. 

 
• Circuit models can account for mode distortion in 

CLIC, ILC, NLC accelerating structures for 
example (later lecture).  
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The loss factor is defined as the energy lost by q1 per 
unit charge squared: 

11 1
1 2

1

U ( )k( )
q

=
rr     (1.7) 

 
And the longitudinal wake can be defined in terms of 
the energy lost by the trailing charge per unit q1 per 
unit q: 
 

21 1;z 1
1

U ( ; )w ( ) q q
τ

τ =
r,rr,r     (1.8) 

 
Both the longitudinal wake and the loss factor have the 
same units, viz. Volts/Coulomb (V/C). 
 
 
 
  
Often the wake per unit length is the practical quantity 
of interest (especially for periodic structures for 
example =>wake/unit period): 
 

;z zl l l
l

d 1w ( ) F ( z, ,z; ); z z vq qdz −τ = − τ = τr,r r, r  

 
This wake has units of Volts/Coulomb/meter.   
 
 
 
 



LECTURE 1 
HOM Mitigation Lecture 1, R.M. Jones, University of Manchester/Cockcroft Inst. (CAS RF Lecture Series 15-6-2010) 

-Page 13 of 74- 

• The wake function is, of course, no more than the 
force per unit charge acting on q. 

 
• Important to note that in many practical cases the 

structures have some symmetry (circular, elliptical, 
rectangular) and the beam moves by a small 
amount from the electrical axis of symmetry. 

 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

o This means that in a multi-pole expansion of fields 
only the first few terms will be significant.   

o Typically only monopole and dipole terms (and 
sometimes quadrupole) are meaningful in realistic 
simulations 

 
 

ql 

zl 

q 

z 

Leading and trailing charges in spherical cavity (a) and cylindrically symmetric 
circular cavities (b).  The cavity on the left is representative of a superconducting 
TESLA cavity and the one on the right of the NLC X-band accelerators. 

(a) 
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Physically Realizable Wakes? 
 

 

 
 

 

 
 
• All wakes, apart from the upper pair are non-

physical! 

β = 1 
β = 1 

β = 1 β = 1 

β = 1 β = 1 
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• Wakes that are non-zero ahead of the particle 
break causality. 

• The solitary case of β<1 is allowed to have Wz(s) 
finite for s<0 

(the “pancake” of field has a finite width) 
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Characteristic “Catch-Up” Distance 
 

 
• In the limit v=c 

the field can only 
interact with the 
trailing particles.  
This is called the 
principle of causality. 

 
• At v=c the field cannot precede the bunch 

 
• Assume a discontinuity at s=0 scatters the field, 

and the leading particle passes this point at time 
t=0 

 
• The scattered field reaches the point l behind the 

drive particle at time t and: ( )2 2ct s l b= − + , where 
( )s vt=  is the coordinate of the leading particle at 

time t 
 

• Assume l b<<  and b s<<  and thus: 
 

( ) 22 2
2

2l bs s l b ~ s 1 s s
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

= − + − +  

 
• The catch-up distance is then obtained: 

 
2bs ~ 2l  
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• Typically the length l is of the order of the bunch 
length: l~σz  

 
• For example for the b=4mm and σz ~ 100 μm: 

 
2

~bs ~ 8cm2l  
 

• Thus, in simulating the wake with a code such as 
ABCI or ECHO2D, it is important to ensure the 
simulation length is larger than the catch-up 
distance 
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Longitudinal Wake Function and  
Loss Function of Bunch Distribution 

 
• The wake functions and loss factors we have 

defined have been for point charge, i.e. the wake 
function is a Green’s function. 

   
• Convolution of the Green’s function with the actual 

current distribution gives the true wake function: 
 

z
l l

U(r, ) 1W ( ) zbq q q i ( ')w ( , ').d '=
⌠
⎮
⌡

τ
ττ =

−∞
τ τ−τ τr    (1.9) 

 
• By superposition we also obtain: 

 

z b2
ll

U(r, ) 1K( ) ( )qq
W (r, )i d= ⌠

⎮
⌡

τ
τ= τ

−∞
τ τr             (1.10) 

 
 
For example, a rectangular bunch distribution, for a 
well-damped delta function wake, is readily integrated.   
The bunch current and point wake are of the form: 
 

b l
H[t T] H[t T]i (t) q 2T

+ − −=      (1.11) 
 

z r0w ( ) w cos[ ]H[ ]τ = ω τ τ       (1.12) 
 
In the region of the bunch we obtain (-T<τ<T): 
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( )r
0

z 2 r

Sin TwW ( ) H TT

⎡ ⎤
⎢ ⎥⎣ ⎦ ⎡ ⎤

⎢ ⎥⎣ ⎦

ω τ+
τ = τ+ω     (1.13) 

 
In the limit of T->0 we obtain a delta function iq(τ) = ql 
δ(τ) and thus the point source wake is uncovered: 
Wz(τ)->wz(τ)  

 
Also, setting τ=0 in Wz(τ) and taking the limit of T->0: 
 

0
zT 0

wlim W (0) 2−>
=       (1.14) 

 
Thus, the wake at the bunch is half that of the total 
wake function.  The bunch loss factor is also obtained: 
 

( )
2

r0
2 r

Sin TwK T

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

ω
= ω      (1.15) 

 
In the limit of T->0 we obtain the point charge loss 
factor: 
 

0
T 0

wk lim K 2−>
= =      (1.16) 

 
The wake function external to the distribution, i.e. for 
τ>=T: 
 

( ) ( )r r
z 0 r

Sin T cos
W ( ) w H TT

⎡ ⎤
⎢ ⎥⎣ ⎦

ω ω τ
τ = τ−ω     (1.17) 

 
Thus, in the limit of T->0 and τ->0 in (1.17) 
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Longitudinal Coupling Impedance 
 

The impedance is given by spectrum of the longitudinal 
point charge wake function: 

l
;;z zlZ (r,r ) w (r,r )exp( j )d

∞

=
−∞

⌠⎮
⌡

τ τ − ωτ τ    (1.18) 

and the point charge wake is given by the inverse 
Fourier transform of the impedance: 

l; ;z zl
1w (r,r ) Z exp(j )d2 (r,r )

∞

=

−∞

⌠
⎮
⌡

τ ω ωτ ω
π

   (1.19) 

 
The Fourier transform possesses real and imaginary 
parts and they are related by the Kramers-Kronig, or 
Hilbert transform. 
 
Also, as we have seen in the case of the rectangular 
distribution:  
 

z lk W (r,r ;0)/2=       (1.20) 
 

and in terms of impedance : 
 

z zl l
0

1k W (r,r ;0)/ 2 Re{Z d(r,r ; )}
∞
⌠
⎮
⌡

= = ω ωπ    (1.21) 

 
Thus, we can think of the real part of the impedance as 
the power spectrum of the energy loss.  This can be 
generalized to the complex impedance being related to 
the complex power spectrum of the energy loss.  
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In practice a Gaussian profile is often used: 
 

2 2

2
l

c texp( )
2I(t) q c

2

−
σ=

πσ
, 

2

2 2
lI( ) q exp( )2c

ω σω = −   (1.22) 

 
The current is normalized such that: lI(t)dt q

∞
=

−∞
∫  
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Wakefunctions, Bunch  
Distributions and Impedance 

 
• The objective is to obtain the total bunch wake in 

terms of the current and impedance 
 

Recall the fact that the wake due to a distribution is: 
 

z
l l

U(r, ) 1W ( ) zbq q q i ( ')w ( , ').d '=
⌠
⎮
⌡

τ
ττ =

−∞
τ τ−τ τr     

 
and take the Fourier transform: 
 

z
l l

U(r; ) 1W ( ) Z(r; )I( )exp(j )dq q 2 q
∞

=
−∞

ττ = ω ω ωτ ω
π ∫   (1.23) 

 
The loss factor: 

z b2
ll

U(r, ) 1K( ) ( )qq
W (r, )i d= ⌠

⎮
⌡

τ
τ= τ

−∞
τ τr  

 
Again, performing a Fourier transform gives: 
 

2
2
l 0

U(r) 1K Z(r; ) I( ) d
q

∞

=
⌠
⎮
⌡

= ω ω ωπ    (1.24) 

For a Gaussian beam we have: 
 

2 2

2c
0

1K(r) Z(r; )exp( )d
∞

ω σ⌠
⎮
⌡

= ω − ωπ     (1.25) 
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• As σ->0 then the current goes to infinity and, as 

expected, the loss factor (in (1.25)) becomes that of 
the point source k. 

 
For example, taking the case of a parallel R-L-C 
circuit the impedance is given by: 
 

l
0 0 0

2k /Z ( /(Q ) I( / 1)( / 1)
ωω) =

ω ω − ω ω− ω ω+
   (1.26) 

 
where the losses are represented by the quality factor 
Q ( 0RC= ω ).  The bunch wake and loss factors are 
quite complicated expressions for this case.  For low 
losses (high Q), the impedance simplifies to: 

 
l 2 2

0

kZ ( ) 2I ωω =
ω −ω

    (1.27) 

 
The bunch wake function, using (1.23) is now: 

2

z

2 2
0

2c
0W ( ) 2kcos( )e

σ ω−
τ = ω τ     (1.28) 

 
and the bunch loss factor for a Gaussian beam, using 
(1.25), becomes: 

2 2
0

2cK ke
σ ω−=      (1.29) 

 
Both of these results ((1.28) and (1.29)) are only valid 
for τ>3σ because this allows the infinite limits to be 
used in the convolution of the bunch distribution with 
the point source wake. 
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Note that for an R-L-C parallel resonance circuit the 
loss factor can be written: 

0Rk 2Q
ω

=       (1.30) 
  
In accelerator physics the shunt impedance is usually 
defined such that a factor of 4 (rather than 2) occurs 
in the denominator of (1.30) –the context should 
make it clear as to whether or not 4 is used.  Thus 
                               acc0Rk 4Q

ω
=          

where Racc = 2R (= V.V*/P).    
 

 
 
• The loss factor is, in general a function of the r.m.s. 

length of the bunch.  For Gaussian bunches, in 
general one finds: 

 
(a 1)a

r tZ ( ) K − +ω ∝ ω ⇔ ∝ σ  

 
• Note the “r” dependence may be dropped as it will 

be understood to be present according to the 
context of the wake function and impedance. 
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Wakefield For Perfectly  
Conducting Structures 

 
 

• For ultra-relativistic beams in perfectly conducting 
accelerator structures the longitudinal and 
transverse forces on a beam vanish 

o No wakefield in limit β (= v/c)->1 (γ->infinity)    
o Only true with no obstacles to reflect the field 

 
• Why? 
 

o A particle traveling in a perfectly conducting 
cylindrical pipe induces image charges on the 
surface of the wall.  These image charges travel 
with the same velocity c.   

 

o Since the particle and image charge move on 
parallel paths, in the limit of v=c they do not 
interact with each other.  
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Longitudinal Wake as a  
Summation of Multipoles 

 
• For accelerators and microwave components with 

cylindrical symmetry it is natural to assume that 
the wake functions can be expanded over modes 
exhibiting the symmetry 

 
 

• We consider charges 
moving on axis. 

• The coordinates of the 
driving charge and 
witness charge are 
(rl,φl=0,zl) and (r,φ=0,z) 
respectively. 

• The charge density can be represented as a 
superposition of multipole moments in cyclindrical 
coordinates: 

   

   ( ) ( )l l 0l
ml l l l

l l m 0

r r r rqq ( ) (z z ) (z z ) 2 cosmr r2
∞

⎛ ⎞
⎜ ⎟
⎝ ⎠=

δ − δ −
ρ = δ φ δ − = δ − −δ φ

π ∑
 (1.31) 

 
• Where the azimuthal symmetry of the geometry 

has been utilized and 0
mδ =0 for m>0, 0

0δ =1 , and zl = 
βcτ.    
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• Thus, the charge can be envisaged the summation 
of a series of charged rings with angular 
dependence cos(mφ). 

• m=0 for example represents a charges ring with 
uniform density up to r=rl  

 
• The wake is nothing more than the solution to 

Maxwell’s equations with a charge source driving 
the differential equations and hence we make a 
superposition of multipole moments: 

 
z z,m z,m1 1 1

m 0 m 0
w ( ; ) w ( ; ) w ( ; )cosm

∞ ∞
=

= =
τ = τ τ φ∑ ∑r,r r,r r,r  (1.32) 
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Radial Expansion of Wake Function in  
the Ultra-relativistic Limit 

 
• The e.m. fields produced by charges traveling 

down an accelerator structure are driven solutions 
of Maxwell’s equations subject to the boundary 
conditions imposed at the walls. 

 
• The longitudinal electric field is produced by the 

bunch of charged particles, and by the currents 
induced in the walls.  Considering only the induced 
fields, it can shown that  

 
2

2
zE 0c

⎡ ⎤
⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥⊥ ⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦

ω∇ − =
βγ

   (1.33) 

 
• In the ultra-relativistic limit (v=c) we clearly have: 

 
2

zE 0⊥∇ =      (1.34) 
 

• The solution in cylindrical coordinates is: 
 

m m z,mz z,ml l l
m 0 m 0

ww (r,r ; ) (r,r ; ) r r w ( )
∞ ∞

=
= =

τ = τ τ∑ ∑   (1.35) 

 
• The monopole mode, m=0, does not depend on 

radial position.  Use is often made of this fact when 
calculating the wake by placing the evaluation 
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point at the radius of the beam tube where the field 
is zero. 

 
• The expansion concerns the secondary fields 

induced by the beam.  The space charge fields show 
a different dependence. 
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Multipole Longitudinal Impedance 
 

• As the impedance is no more than the Fourier 
transform of the wake function then it too can be 
expanded in a multipole expansion: 

 
m m1 1 1

m 0 m 0
Z(r,r ; ) Z (r,r ; ) Z (r,r ; )cosm

∞ ∞
=

= =
ω = τ τ φ∑ ∑  (1.36) 

 
• For ultra relativistic charges the radial dependence 

is known: 
 

( )m m mm 1 lZ (r r ; ) r r Zω = ω,     (1.37) 
 

where mZ  has dimensions Ω/m2m 
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Synchronous Beam Fields 
 

• We have seen that the fields scattered from the 
obstacles (HOM ports, couplers, tuners, kickers, 
etc) give rise to non-zero 
wake functions. 

• Some of these fields are 
localized  around the bunch 
(resistive wall for example), 
others are localized in 
resonant structures such as 
the r.f. cavities.   

• All these fields interact with 
the beam 
 

• Only the fields synchronous with the charges can 
change the energy of the charges 

 
 
Making an expansion of the longitudinal field in a series 
of plane waves: 
 

2
j( t z)

z z
1E (z,t) d d E ( , )e2

∞∞⎛ ⎞ ω −κ
⎜ ⎟⎜ ⎟
⎝ ⎠ −∞ −∞

⌠
⌡= ω κ ω κ

π ∫    (1.38) 

 
• The explicit dependence on (r,rl,zl) has been 

omitted 
 
In terms of the wake function we have: 
 

PEP II Cavity: Beam pipe, HOM 
and tuner ports are illustrated 
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2

0

z z
l

jz( )j
z

l

1 zw ( ) E (z,t )dzq v

1 1 e d d E ( , ) e dzq2

∞

−∞
∞∞ ∞⎛ ⎞ − κ−κωτ

⎜ ⎟⎜ ⎟
⎝ ⎠ −∞ −∞−∞

⌠
⎮
⌡

⌠
⌡

τ = − = + τ =

− ω κ ω κ
π ∫ ∫

  (1.39) 

 
where 0 / vκ = ω .  The point source delta function is given 
by: 
 

0jz( )
)0

1( e dz2
∞ − κ−κ

−∞
δ κ− κ =

π ∫     (1.40) 

Thus, only those components of the fields propagating 
with the same phase velocity can effect the charges 
energy.   The fields from all other phases do not 
contribute as they average out to zero.   We are left 
with: 
 

j
z z 0

l

1w ( ) e E ( , )d2 q

∞
ωτ

−∞

⌠⎮
⌡

τ = − ω κ = κ ω
π

   (1.41) 

 
Now, as the wake function is defined in terms of the 
longitudinal coupling impedance is defined as: 
 

( )z z
1w ( ) Z exp(j )d2

∞

=

−∞

⌠
⎮
⌡

τ ω ωτ ω
π

    (1.42) 

then it is clear that the impedance may also be written 
in terms of the Fourier transform of the field: 
 

z z 0
l

1Z ( ) E ( , )qω = − κ = κ ω     (1.43) 
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For finite length cavities the delta function is replaced 
by the sinc function: 

( )
( )

0
0jz( )

L/2 0

L/2
Lsin 21 Le dz L2 2

2

⎡ ⎤
⎢ ⎥
⎢ ⎥− κ−κ ⎣ ⎦

−

⌠⎮
⌡

κ− κ
=

π π κ− κ
   (1.44) 

 
and the sinc becomes a 
delta function as the length 
L->infinity.   For a finite a 
length, the sinc (=sin[x]/x) 
has a maximum at 0κ = κ  
and the zeros are located at 

0 2 /Lκ = κ ± π . 
 
 
 

• For long wavelengths the fields tend to be confined 
to a given region in which they propagate and are 
non-propagating (evanescent) elsewhere.    

 
• The integration path is confined to the propagating 

region. 
 

• For short wavelengths fields propagate out of 
cavities into the beam tubes.  However, the sinc 
function (1.63) shows that the contribution is small 
and hence the integration may be extended to 
infinite limits. 
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Wakefield For Waveguide with Lossy Walls 
 

• For a pipe with finite conductivity σ and if the skin 
depth is much smaller than the thickness of the 
pipe wall then all of the field is essentially 
contained within a skin depth or so.   

 
• Thus, the pipe walls can be considered to be 

infinite.  
 
 

 
 
 
 
 
• During the motion of the charged particle bunch a 

non-zero wakefield will appear behind the charge. 
 
• In general the wakefield that develops from 

reflections from waveguide discontinuities 
(obstacles, tuners and irises etc) is far larger than 
the resistive wall wake. 

o However, for a collimator or beam scraper the 
resistive wall wake can be dominant effect.  The 
collimator is used to scrape any beam halo that will 
develop on accelerating a relativistic beam through 
several km. 
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Resistive Wall Wakefield 
 
For a perfectly conducting matched waveguide with no 

obstacles to reflect back the field there is no overall 

wakefield.  However, the presence of loss on the walls of 

the waveguide gives rise to a wakefield.  For a 

cylindrical waveguide the E and H fields are given by: 

jkz0
r

jkz

qZE ( ) e2 r
qH ( ) e2 r

⎫
− ⎪

⎪
⎬
⎪−
⎪φ
⎭

ω =
π

ω =
π

         (1.45) 
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The continuity at the wall of the waveguide at r = b 

requires the magnetic field component inside the 

surface be the same as that outside.  Inside the wall the 

field is sustained by a surface current flowing along the 

z direction (the waveguide is orientated along z).  The 

electric field along the z-axis is given by: 

z cE ( ) Z H ( )φω = ω      (1.46) 

where the surface impedance is given by: 

0
c

j ZZ c
ω

= σ       (1.47) 

 Z0 (= 377) is the characteristic impedance of free space 

and c is the velocity of light.   The flux of the Poynting 

vector on wall of the pipe gives the longitudinal 

impedance per unit length: 

2
0

c
Z1 jZ( ) 2 bZ H 2c2 bφ

ω+ω = π =
σπ

     (1.48) 
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• This is often a small effect compared to that 

encountered due to impedance of obstacles 

encountered in the accelerator structure.   

However, for short bunches with high charge 

considerable power dissipation may occur for non-

superconducting cavities (e.g. LCLS vacuum 

chamber, LHC collimators and magnets). 

 

 

 

 

 

 

 

 

 

The radiation wavelength in an FEL is 
( )

u
r 2 22 1 K / 2

λ
λ =

γ +
 

The energy of the beam should be kept constant over the length of the undulator.  
For LCLS with a 1 nC beam 4/ 3 5x10−Δγ γ ≈ −  
A uniform energy change, such as incoherent radiation of the beam can be 
compensated by tailoring K.  However, wakefields generate a ΔE that varies along 
the bunch. 
Clearly it is important to minimize these wakefields. 

Conductivity has frequency (ac) 

dependence 0

1 i
σ

σ =
− ωτ

 

Consider different walls of vacuum 
chamber to reduce wake (cu, al 
indicated) 
 

Ref: K.L.F. Bane, G. Stupakov 2004, SLAC PUB-
10707 
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• The collimators for the ILC and LHC have a 

significant resistive wall wakefield component as 

the energetic beam impinging on the walls of the 

collimator changes the conductivity.  Experiments 

have been conducted in this area and means to 

mitigate for this are being employed –such as 

ceramic walls and breaking up the flow of currents 

in the conducting surfaces by creating variegated 

or slotted walls.  
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Transverse Wake Function 
 
 

• Drive charge, ql, is 
displaced with respect to 
the axis of the cavity 

• Multipole components 
are exited in the 
transverse plane: dipole, 
quadrupole, sextupole etc 

• Trailing charge q is 
subject to a Lorentz force which has both 
longitudinal and transverse components 

• Transverse momentum kick imparted to trailing 
charges: 

 

             l
21 l l l

zM (r,r ; ) F ( ,z, ,z ;t)dz, vt⊥

∞

−∞

⌠
⎮
⌡

τ = +τ=r r   (1.49) 

 
• The integration is assumed to be over an infinite 

distance. 
• A transverse displacement can lead to both vertical 

and horizontal kicks 
 
• Transverse kick measured in Volts/Coulomb 

defines the transverse wake function: 
 

   21 l
l

l

M (r,r ; )w (r,r ; ) q q=⊥
τ

τ     (1.50) 
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• The dipole transverse loss factor is defined as the 
amplitude of the transverse momentum kick 
given to the charge by its own wake per unit 
charge (V/C): 

 
11 l

2
l

M (r )k (r)
q

=⊥
     

(1.51) 

 
 
 
 

• The dipole component of the transverse kick is 
the dominant term for ultra relativistic charges.  
The transverse dipole wake function is defined as 
the transverse wake per unit of transverse 
displacement (V/Cm): 

 
' 21 l

l
l l

M (r,r ; )w (r,r ; ) q qr=⊥
τ

τ     (1.52) 

 
• and the transverse loss factor (V/Cm): 

 
' 11 l

2
l l

M (r )k (r)
q r⊥ =

    
(1.53) 
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Transverse Wake Function and  
Loss Factor of a Bunch 

 
As in the case of the longitudinal wake we take the 
convolution of the bunch current with the point source 
transverse wake function to obtain the bunch dependent 
wake: 

 
l

1W ( ) bq i ( ')w ( , ').d '⊥ ⊥
⌠
⎮
⌡

∞
τ =

−∞
τ τ−τ τr  (1.54)  

 
and the bunch transverse  loss factor : 

l

1K ( ) bq i ( )W (r; )d⊥ ⊥
⌠
⎮
⌡

∞
τ =

−∞
τ τ τ  (1.55) 

The transverse wake and loss factor per unit 
displacement are: 
 

' W (r; )W (r; ) r⊥
⊥ τ

τ =      (1.56) 
' K (r; )K (r; ) r⊥

⊥ τ
τ =      (1.57) 

 
both of which are measured in Volt/Coulomb/meter 
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Panofsky-Wenzel Theorem 
 Relating Longitudinal  
and Transverse Wakes 

 

• Firstly, we consider both the driving charge and 
the witness charge both lying moving along the z-
axis of the accelerator.   

 
• Once the longitudinal component of the 

wakefield has been calculated the transverse 
wakefield can be derived from it in a 
straightforward manner.  From Maxwell’s 
equation: x t

∂∇
∂

E = - B then: 

z zx Et z ⊥ ⊥
∂ ∂ ∇
∂ ∂

e B = E -     (1.58) 
 

• Using the relation for the total derivative:  
 

,l l
d 1(r,r ,(z s) /c) (r,r (z s) /c)cz tdz

⎛ ⎞
⎜ ⎟⊥ ⊥⎜ ⎟
⎝ ⎠

∂ ∂+ = + +
∂ ∂

E E   (1.59) 

 
• then the derivative of the transverse wake with 

respect to s is written in the form: 
 

( ) ( ),zl l l
1

1 d(r,r ,(z s) /c) dz r,r ,(z s) /c E r,r (z s) /cqs dz
∞ ⎡ ⎤

⎢ ⎥⊥ ⊥ ⊥−∞ ⎢ ⎥⎣ ⎦

∂ + = + −∇ +
∂ ∫W E

 (1.60) 
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• Performing the integrals as indicated above the 
first term vanishes provided ⊥E vanishes at the 
boundaries and we are left with (V/C/m): 

  
,l l(r,r s) W (r,r ,s)s ⊥ ⊥

∂ = −∇
∂

W    (1.61) 
 

• This is the Panofsky Wenzel theorem (1956).   A 
single integration provides the transverse 
wakefield once the longitudinal has been 
calculated: 

l l

s
(r,r ,s) W (r,r ,s')ds'⊥ ⊥

−∞
= −∇ ∫W   (1.62)  

 
• In applying the above formula it has been 

assumed that  lslim (r,r ,s) 0⊥−>∞ =W .   In practice one has 
finite limits and the lower limit is often taken at a 
point in which the field is zero (on the walls of a 
perfectly conductor for example). 

 
 
• If the driving charge is slightly offset from the z-

axis we expand the rhs of (1.80) retaining only 
the first order terms in the offset rl: 

 

l
l

2.,rl l l lr 0
W (r,r ,s) ~ W (r,0,s) W (r,r ,s) r O(r )⎡ ⎤

⎢ ⎥⊥⎣ ⎦ =
+ ∇ +  (1.63) 

 
• Thus (1.80) becomes: 
 

agrudiev
Text Box
1.61

agrudiev
Text Box
1.61
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l
l

, ., ,rl l lr 0
(r,r s) W (r,0,s) W (r,r ,s) rrs

⎧ ⎫⎪ ⎪⎡ ⎤
⎨ ⎬⎢ ⎥⊥ ⊥ ⊥⎣ ⎦ =⎪ ⎪⎩ ⎭

∂ = −∇ + ∇
∂

W   (1.64) 

 
• The first term is in fact a monopole contribution to 

the transverse impedance and this often disappears 
according to the geometry (circular, rectangular 
elliptic).  The remaining term is the dipole 
impedance: 

 

l
l

, ., ,rl l lr 0
(r,r s) W (r,r ,s) rrs

⎡ ⎤
⎢ ⎥⊥ ⊥ ⊥⎣ ⎦ =

∂ = −∇ ∇
∂

W    (1.65) 
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Mode Expansion of Transverse Wake 
Function in Coordinates  

with Cylindrical Symmetry 
 

• As in the case of the longitudinal wake function, 
the transverse wake function is expressed as a 
superposition of multipole terms: 

 
,ml l

m 0
ww (r,r ; ) (r,r ; )

∞

⊥ ⊥
=

τ = τ∑    (1.66) 

 
• Applying Panofsky-Wenzel(1.80) and making use 

of the expansions of the longitudinal wake 
function(1.32), (1.35) we obtain: 

 
m 1 m, z,m, l lm

ˆˆw (r,r s) w (s)r r cos(m )r sin(m )s
⎧ ⎫⎪ ⎪−
⎨ ⎬⊥ ⎪ ⎪⎩ ⎭

∂ = − φ − φ φ
∂

 (1.67) 

 
• It is interesting to note that the dipole term, m=1 is 

linearly proportional to the offset of the driving 
charge and it is independent of the witness charge.  
The dipole transverse force is directed along the 
offset of the leading charge: 

 
, z,m,l l lw (r,r s) w (s)rs ⊥

∂ = −
∂

    (1.68) 
 

• where z,mw (s)  is the amplitude of the dipole 
longitudinal wake function (V/C/m2) 

 
 



LECTURE 1 
HOM Mitigation Lecture 1, R.M. Jones, University of Manchester/Cockcroft Inst. (CAS RF Lecture Series 15-6-2010) 

-Page 46 of 74- 

Transverse Coupling Impedance   
 

• The impedance is defined in terms of the Fourier 
transform of the transverse wake function with the 
additional  imaginary factor (Ohms): 

( )2 2,lZ (r,r ; ) j w (r,r ; )exp j d
∞

⊥ ⊥
−∞

ω = τ − ωτ τ∫    (1.69) 

 
• The imaginary constant was introduced in order to 

make the transverse impedance play the same role 
as the longitudinal one in beam stability theory.   

• The dipole wake is usually the dominant one 
therefore it is natural to normalize with respect to 
the offset of the drive bunch (Ohms/m): 

' 2l
2l

l

Z (r ,r ; )Z (r ,r ; ) r
⊥

⊥
ω

ω =     (1.70) 

 
The transverse wake is obtained via the inverse Fourier 

transform: 
 

( )2 2,l
jw (r,r ; ) Z (r,r ; )exp j d2

∞

⊥⊥
−∞

τ = − ω ωτ ω
π ∫   (1.71) 

 
The Fourier transform of (1.80) gives the dipole 
transverse impedance in terms of the longitudinal one 
(Ohms): 

,l lFT (r,r s) W (r,r ,s)s
⎧ ⎫⎪ ⎪
⎨ ⎬⊥ ⊥⎪ ⎪⎩ ⎭

∂ = −∇
∂

W     

; ;l l
cZ (r,r ) Z(r,r )⊥ ⊥⇒ ω = − ∇ ωω    (1.72) 

 
For an arbitrary shape (1.84) gives: 

agrudiev
Text Box
1.61
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l
l

, ., ,rl l lr 0
FT (r,r s) W (r,r ,s) rrs

⎧ ⎫⎪ ⎪⎡ ⎤
⎨ ⎬⎢ ⎥⊥ ⊥ ⊥⎣ ⎦ =⎪ ⎪⎩ ⎭

∂ = −∇ ∇
∂

W     

 

l
l

; .,r ,rl l lr 0

cZ (r,r ) Z(r,r ,s) r⎡ ⎤
⎢ ⎥⊥ ⊥ ⊥⎣ ⎦ =

⇒ ω = ∇ ∇ω    (1.73) 

 
 
 
In cylindrical symmetry we obtain: 

 
;,l l l l

cZ (r,r ) Z ( )r⊥ ω = ωω     (1.74) 
 
where (1.87) and (1.36) have been used. 
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Practical Wake Function Expansions 
   

The longitudinal and transverse wake functions are 
written (justification for summations given in 
appendix):  

 
( )n n

n
W ( ;s) 2 (s) cos( s /c)= θ κ ω∑l lr ,r r ,r   (1.75) 

( ) nn
n

( ;s) 2 (s) sin( s /c)⊥ ⊥= θ ω∑l lr ,rW r ,rκ   (1.76) 

 
where the longitudinal and transverse loss factors are 
given by: 

 
*
n nl

n

V ( )V ( )
n 4U=

r rκ , 
*
n nl

n n

V ( ) V ( )
n 4U /c

⊥∇
=⊥ ω

r rκ    (1.77) 

 
and Un is the energy stored in a particular mode n and 
the voltage evaluated from the integral of the axial 
electric field along L, the length  of the cavity: 

 
L

nn zn
0

i zV ( ) E (r,z)exp dzc
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

ω= ∫r    (1.78) 

and a similar expression  for nV ( )lr . 
 
The transverse wake function is zero at the bunch (s=0) 
and it increases linearly in close proximity behind the 
bunch.   There is no wake in front of the bunch from 
causality considerations. 
 
These wake functions are valid for v=c.  For v<c 
additional correction terms of O(γ-2) occur. 
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The mth order multipole wake functions are: 
 

m
n

m m
m ml ( )n

n

r rW (s) 2 (s) cos( s /c)a a
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

= θ κ ω∑ lr ,r   (1.79) 

mn
n

m m 1
m l ( )m

nn

r r ˆˆ(s) 2 (s) rcosm sinm sin( s /c)a a a /c

−⎛ ⎞ ⎛ ⎞ ⎡ ⎤⎜ ⎟ ⎜ ⎟ ⎢ ⎥⊥ ⎜ ⎟⎜ ⎟ ⎣ ⎦⎝ ⎠⎝ ⎠
= θ θ−θ θ ω

ω∑ lW r ,rκ

(1.80) 
In particular for calculations on X-band structures for 
the NLC, the dipole (m=1) wake function is often 
computed in the form: 
 

m
n

l
( )nd

nL
W (s)(s) 2 (s) sin( s /c)r

⊥ Κ= = θ ω∑ lW r   (1.81) 

 
where the “kick factor” is defined in terms of the loss 
factor: 
 

2n
n

Ln

cK a= ω
κ       (1.82) 

 
Both the kick factor and specially defined dipole wake 
have units of V/C/m2, and for X-band high energy linacs 
these units are often rewritten as: V/pC/mm/m.  
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Why use these strange units? 

 
• The millimeter factor arises from the offset of the 

drive bunch and this is usually of the order of mm 
(the iris has a radius of ~4mm or so).  

• The per meter factor arises because each 
accelerating structure is of the order of 1m or less.   

• The beam usually has a charge of ~ a few pC 
(approx 1.1 1010 particles are present in one bunch). 

 
 

To obtain the transverse momentum change of a 
trailing particle due to the wake left behind the 
drive particle: 
 

 multiply the specially defined dipole kick 
factor by the driving and witness charge, the 
length of the accelerating structure, and the 
offset of the drive charge and divide by the 
velocity of light (Δp=KqqlLa/c). 
 In terms of the normal kick factor one 
would compute Δp=Kqql/c. 
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Wake Function in A Pill Box Cavity 
 

• A closed off, circular cylinder is taken as the cavity 
to analyze.  

•  In microwave parlance this is often known as a 
“pill box” cavity.   

• This cavity permits a formally exact calculation of 
the wake functions.  However, few of the 
summations can be evaluated in closed form. 

 
 Before proceeding, it is worth noting the 
general feature that the summation of the 
series of modes which describe the wake 
function converges rather slowly within the 
bunch itself.   
 Nonetheless, for positions well behind the 
bunch, the series converges much faster and 
hence the energy loss can be accurately 
evaluated. 

 
To evaluate the wake function we will use: 
 

,
V VsG(s) 2 k cos kc 4U

⎛ ⎞ μ μ
⎜ ⎟μ μ μ⎜ ⎟

μ⎝ ⎠μ
= ω =∑    (1.83) 

 
Multiplying by the charge of the drive particle gives in 
the potential seen by the trailing particle. 
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The longitudinal modes in the cavity are given by: 

 
( ) ( )2 22 2 2

np n np/c j /R p/gω = + π = ν    (1.84) 
 

where is the nth solution of J0(jn)=0, g is the length of 
the cavity and R is the radius.  The cavity fields are: 
 

( )

( )

( )

n,p n
z n np0

n,p
n npr 1

n,p
np n np0 1

j pzrE J j cos exp i tgR R
p pzrE J j sin exp i tg gR

pzrH i J j cos exp i tgR

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟θ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

π= ω

π π= ω

π= ω ε ω

  (1.85) 

The voltage is evaluated on the axis (r=0): 
 

( ) ( )
g pnp

znp np
n0

i RV E (r 0,z,t z /c) 1 1 exp i gj
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

ν
= = = = − − ν∫   (1.86) 

and thus: 

( ) ( )
2

pnp*
np np np

n

RV V 2 1 1 cos gj
⎛ ⎞ ⎡ ⎤⎜ ⎟= ⎢ ⎥⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠

ν
− − ν     (1.87) 

 
The energy stored in the cavity is given by: 
 

gR
np *np 2 2 20

np np n1
0 0 0

U dr d dzH H gR J (j )4
2π

θ θ
πε

= θ = ν∫ ∫ ∫   (1.88) 

 
Thus, the loss factor is evaluated as: 
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( ) ( )p
np

np 0 2 2
0 p n n1

1 1 cos g1 2k g 1 j J (j )
− − ν

= πε +δ
   (1.89) 

 
where 0

pδ  is the Kronecker delta function.  The point 
charge longitudinal wake function is then given by the 
double summation: 
 

( )
0

pn 1

p
1 1 cos gnp

gG(s) 2 (s) cos snp2 2j J (j )n n1

⎛ ⎞
∞ ∞ ⎜ ⎟ ⎛ ⎞⎝ ⎠

⎜ ⎟
⎝ ⎠=−∞=

− − ν
πε = θ ν∑ ∑   (1.90) 

 
It is not possible, in general, to obtain a closed from to 
the above sum.  However, for the special case of 

2 2
0s s 4R g g< ≡ + −  the sums can partially be evaluated to a 

series of delta functions: 
 

0

1 1
2

2 2 2
n 1 IP IP

g2 gG(s) 2 (s)ln s

s 1 s s s s(2ng s)ln 1g 2g 2g 2g 2gs g

⎡ ⎤
−⎢ ⎥

⎢ ⎥⎣ ⎦
⎧ ⎫− −
⎛ ⎞ ⎛ ⎞∞ ⎡ ⎤ ⎪ ⎪⎡ ⎤ ⎡ ⎤⎪ ⎪⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎪ ⎪= ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

πε = δ

δ − + − + +
−∑

(1.91) 

 
• Applying causality, this wake must be the same as 

that produced in between two parallel plates.  That 
is, no signal is able to propagate from the point 
where the driving charge enters the cavity, be 
reflected from the outer wall, and return to the 
path followed by the driving charge with a distance 
s0 behind it.  
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• The wake is accelerating at all points accept at s = 
0.   The driving charge itself experiences an infinite 
retarding potential at 
the moment it exits the 
second plane of two 
parallel plates.. 
Spherical wavefronts, 
which expand with the 
velocity of light, are 
generated when the 
charge enters through 
the first plane and 
again when it leaves 
through the second 
plane. On the axis two of these wavefronts join in 
the double cusp geometry shown at position X.  
When a trailing particle meets and passes through 
this singularity or a later reflection of it, it will 
experience a finite accelerating potential given by 
the third term on (1.141). For small s this 
accelerating potential diverges as 1 /s.  If s is a 
multiple of 2g the test particle will travel with the 
singularity across the cavity and experience an 
infinite accelerating potential. 
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The convolution of the point source wake in (1.140) with 
a Gaussian current: 

2
2

sexp( )
2I(s)

2

−
σ=

πσ
     (1.92) 

 
gives the Gaussian  bunch wake function: 
 

( )
0

2 np
2 pn 1

gG(s)
p

1 1 cos gnp is(s)exp Re w2 22 2 2j J (j )n n1

s
⎛ ⎞

⎧ ⎫∞ ∞ ⎜ ⎟ ⎛ ⎞⎛ ⎞ ⎪ ⎪⎝ ⎠ ⎜ ⎟⎜ ⎟ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪=−∞⎝ ⎠ = ⎝ ⎠⎩ ⎭

πε =

− − ν ν σ
θ − −

σ ∑ ∑
 (1.93) 

 
where w(z) is the complex error function: 
 

2 2

0

zdtexp a t izt w2a 2a
∞

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

π− + =∫     (1.94) 

 

 
Computed Pill-Box Wake Function for Gaussian Bunch 
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Mode results are shown with solid lines. Dashed lines 
correspond to a time domain simulation.  The fig on the 
right is shows the effect of changing the number of 
modes: a,b,c,d =10, 40, 160, and 64 modes, respectively. 
 

• “Outside” the realm of the bunch, i.e. |s|>4σ the 
wake function is accurately computed with a 
limited number of modes –the time domain and 
modal analysis agree very well!  Ten modes is 
sufficient in this particular example for an accurate 
computation of the wake. 

 
• Inside the region the bunch, i.e. |s|<4σ  many 

modes are necessary in order to accurately 
compute the wake function.  As the number of 
modes is increased and the number of mesh points 
in the time domain method is increases both 
methods converge towards the same value  -they 
converge from opposite ends.  

 
• The wake function is decelerating within the 

bunch.  Is this physically correct?  Yes, otherwise 
the bunch would be continuously accelerated by its 
own field.  Although, the tail of the bunch is in an 
accelerating region and this does permit 
acceleration of the tail by the head of the bunch.     

 
• There is no damping in this system.  Hence the 

oscillation in the wake is allowed to rise up again at 
some point. 
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R-L-C Circuit Model of Single Mode and 
Impedance-Wake Relations 

 
Here, we point out some of the essential properties of 
impedance and this will serve as an introduction to the 
coupled two-band (TE-TM) circuit, coupled to a 
transmission line (representing a waveguide-like 
manifold) that will in forthcoming lectures, be used to 
model the wakefield in a DT (Detuned Structure) and in 
a DDS (Damped and Detuned Structure).  However, 
here the basic features of R-L-C impedances and 
wakefields are delineated. 
 
 
 
 
 
 
 
              
Each cell of the accelerating structure is represented by 
an R-L-C circuit.  The circuit has a shunt impedance Rs, 
an inductance L and a capacitance C.   In practice this 
represents the fields present in the structure and they 
cannot readily be measured.  However, related 
quantities can be measured for a so simple R-L-C 
circuit, namely, the cavity resonance frequency, ωr, the 
quality factor Q and the damping factor α: 
 

1/2 1/2
r s r(LC) , Q R (C/L) , /(2Q)−ω = = α =ω  (1.95) 

I 

Rs 

C L 

agrudiev
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The circuit is driven by a current I and the voltages 
across each element are identical: 

 
Ls cR

dI1V I R dt I LC dt= = =∫     (1.96) 
 

Differentiating with respect to time t give the total 
current as: 

2
2s

dI 1 d d 1C VR Ldt dt dt
⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

= + +     (1.97) 

and this is readily rewritten as: 
 

2 2r rr2
Rd d dIVQ Qdt dtdt

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

ω ω+ +ω =     (1.98) 

 
The solution is a damped oscillation: 
 

1/2
t ' t ' ' 2 1

r r r rV(t) e Acos t e Bsin t, 1 (4Q )⎛ ⎞
⎜ ⎟
⎝ ⎠

−α −α −= ω + ω ω =ω − (1.99) 

 
The Wake Potential is calculated by enforcing a delta 
function driving current: 
 

I(t) q (t)= δ      (1.100) 
 

This instantaneously induces a voltage across the 
capacitor: 

 
r sV(0 ) q/C ( R /Q)q+ = = ω    (1.101) 
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The energy stored in the capacitor is equal to the energy 
lost by the point charge: 

2 2 2r sRq V(0 )U q q qC 2Q 2
+ω= = = = κ   (1.102) 

 
where κ is the mode loss factor: 

r s
2

RU
2Qq

ωκ = =     (1.103) 

 
This capacitor then discharges through the resistor and 
through the inductance: 
 

2
r sR r

2st 0

I Rdq V(0 ) 2dV 1 1 q qRC C C Qdt dt Q+

+

=

ω ω κ= − = − = − = − = −  (1.104) 

 
Thus we have the initial conditions: 

V(0 ) 2 q+ = κ  and r2V(0 ) qQ
+ ω κ= −   (1.105) 

 
Thus we now enforce these initial conditions in order to 
solve for the constants A and B.  The differential of the 
voltage is given by: 
 

t ' ' ' '
r r r r

dV e [( A B )cos t (B A )sin t]dt
−α= − α+ ω ω − α+ ω ω   (1.106) 

 
Thus we obtain: 

A 2 q= κ  and ' r
r

2 qA B Q
ω κ− α + ω = −   (1.107) 

and  this allows the voltage response to a delta function 
current excitation to be obtained as: 
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't ' ' 2 1/2rr r r'
r r

sin tV(t) 2q e cos t , (1 (2Q) )
2Q( / )

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

−α −ω= κ ω − ω =ω −
ω ω

(1.108) 

 
This voltage is induced by a point charge going through 
a cavity at t =0.  A second charge q’ will at a time t gain 
or loose energy U = q’V(t).   This energy loss or gain per 
unit source and probe charge is the wake or Green 
function G(t).  For this cavity resonance we have: 

't ' rr '
r r

sin tG(t) 2 e cos t
2Q( / )

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

−α ω= κ ω −
ω ω

   (1.109) 

 
Typically the quality factor is very high and thus: 

 
t '

rG(t) 2 e cos t−α= κ ω     (1.110) 
 
To evaluate the impedance we switch to a complex 
phasor notation: 
 

0
ˆI(t) Iexp(j t), V(t) V exp(j t)= ω = ω    (1.111) 

 
and thus the differential equation for the R-L-C circuit 
becomes: 

2 2 r sr r 0
R ˆj V exp(j t) j Iexp(j t)Q Q

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

ω ωω ω−ω + +ω ω = ω  (1.112) 

 
The impedance is the ratio of the voltage to the current: 
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2 2r
r

2 2r
r

1
r

s s0 2 2 1 2
r r 2

1 jQ
j QˆZ( ) V/ I V / I R R Re{Z} jIm{Z}

j Q
1 Q

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

ω −ω
ωω−

−
ω −ω

ωω

−
ω ωω = = = = = +

ω −ω + ω ω
+

(1.113) 
 
For relatively loss-less systems with very high quality 
factors then the impedance is large in the vicinity of 

rω≈ω  or r r r/ ( | | / ) 1Δω ω = ω−ω ω and this allows the 
impedance to be simplified to: 
 

rs 2 2
r

1 j2Q /Z( ) R
1 4Q ( / )

− Δω ωω =
+ Δω ω

    (1.114) 

Resonator has the following properties, which are used 
in the coupled circuit design described in the following 
lectures: 

r r rZ ( )ω= ω → ω  has a maximum, and rZ( ) 0ω =  
r i| | Z ( ) 0ω <ω → ω >  the impedance is inductive 
r i| | Z ( ) 0ω >ω → ω <  the impedance is capacitive 

 
Further, for any impedance or potential it can readily 
be shown that: 
 

r r i iZ ( ) Z ( ), Z ( ) Z ( )ω = −ω ω = − ω    (1.115) 

Z( ) G(t)exp( j t)dt
∞

−∞
ω = − ω∫ ,  Z(ω) = the Fourier transform of 

G(t), the Wake function 
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Methods of Wakefield HOM Calculation 
 
 

1. Finite difference + finite element codes => MAFIA, 
Omega3 (3-d frequency domain), Tau3(3-d time domain) 
GdfidL (3-D freq/time domain), ABCI (time domain), 
HFSS (finite difference freq. domain) 
 
 
2. Mode-matching (frequency domain) => Smart2D(2-d, 
match modes transversely), Transvrs (single periodic iris, 
match modes longitudinally), Cascade(2-d, match modes 
transversely) 
 
3. Circuit models: Single and dual mode manifold-
damped, frequency domain models 
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Lecture #1 Homework 
 
1.  Measurements made on an accelerator cavity indicate that the impedance of the cavity 
is almost entirely inductive in nature (Z = jωL) 
 
(a) By taking the Fourier transform calculate the longitudinal wake function, W(s) for this 

case.  (You may find it helpful, to use the following FT pairs 1W( ) Z( )exp( j )d
2

∞

−∞

τ = ω ωτ ω
π ∫ , 

Z( ) W(t ') exp( j t ')dt
∞

−∞

ω = − ω∫ ) 

(b) Take the convolution with a general time dependent current, I(t) and hence obtain the 
voltage. 
(c) Obtain the bunch wakefield for a charge with a Gaussian distribution by taking the 

convolution with a Gaussian line density (
2

2
z

1 s(s) exp
22

⎛ ⎞
λ = −⎜ ⎟

σπσ ⎝ ⎠
) with the wake of part 

a.    

2.  Given the fact that the wakefield 1W( ) Z( )exp( j )d
2

∞

−∞

τ = ω ωτ ω
π ∫ , is a real quantity and that 

for a beam traveling at the velocity of light there can be no wake ahead of the beam 
(causality), prove that: 
 
(a) Re{Z(ω)} = Re{Z(-ω)} and  Im{Z(ω)} = Im{Z(-ω)} 
(b) the self-wake seen by the driving particle itself is half that of the total wakefield that a 
trailing particle will see (hint: expand the exp(i ωt) into sin and cos functions and take the 
real and imaginary parts of the wake given in terms of the inverse Fourier transform of 
impedance, then derive an expression for the wake that does not take into account 
causality and compare it to one that does include it) .  This is known as the fundamental 
theorem of beam loading 
 
3. Given the longitudinal impedance (per unit length) of a lossy circular waveguide of 

radius, b and, conductivity, σ: Z = 0Z1(1 j)
2 b 2c

ω
+

π σ
, calculate the associated wake 

function.  Here, Z0 =377 Ohms is the impedance of free space and c is the velocity of 
light (hint: refer to the table 2.1 of transforms in chapter 2 of A. Chao’s book or consider 
a branch cut in the contour integral). 
 
4. (a)Derive the expression for the longitudinal loss factor of a bunch in terms of the λ(k), 
the Fourier transform of the line density of the bunch and the impedance of the wake Z(k) 

(answer: 2
loss 0

ck Z(k) | (k) | dk
∞

= λ
π ∫ ). 

(b) Now do the same for the transverse loss factor (often called the kick factor) for 
2

2
z

1 s(s) exp
22

⎛ ⎞
λ = −⎜ ⎟

σπσ ⎝ ⎠
 and the transform

2

2 2
z

( ) exp
2 c

⎛ ⎞ω
λ ω = −⎜ ⎟

σ⎝ ⎠
.  In this case the impedance 
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is defined in terms of the transverse wake by: i s / c
t t0

iZ ( ) W (s)e ds
c

∞ ωω = − ∫  (hint: take real and 

imaginary parts of the wake and realize that the imaginary part of the impedance now 

plays the same role as the real part did in part a.  Answer: t,loss r z3/ 2 0

2k Z (w)D( / c)d
∞

= ωσ ω
π ∫  

where Dawson’s integral is given by: 2 2xx y

0
D(x) e e dy−= ∫  ). 

 
In all questions, pay attention to the units of your answers.  For example, you will always 
expect to see longitudinal impedance in units of Ohms/m and wakefields in V/C/m (or 
V/pC/m etc).  
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APPENDIX A: Modal Sum 
Representation of Wakefield  
via Field Function Analysis 

 
It will be shown that for any cavity the wakefield may 
be expanded in a modal sum: 

n n
n

W (s) 2 cos( s /c) s 0= κ ω ∀ >∑    (1.116) 

Where s>0 is refers to the distance behind the driving 
bunch (by causality for s<0 then W =0).  The κn are the 
characteristic loss factors of the structure and ωn are 
the cavity resonance frequencies;  both of which are 
readily calculated with computer codes, HFSS, KN7C, 
MAFIA or OMEGA3 (a  finite element computer code 
code developed at SLAC),  for example. 
 
In order to prove the above general expansion we resort 
to a vector and scalar potential representation of the 
fields: 
 

, xt
∂= −∇Φ = ∇
∂

E A B A      (1.117) 
 

Substituting these relations into Maxwell’s equations 
readily yields: 

 
22 2 2
2-c c tt

− −∂ ∂∇ μ + ∇Φ
∂∂ 0A A = - j   (1.118) 

2 1
0
−∇ Φ = −ε ρ      (1.119) 
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Where a Coulomb gauge has been used for the 
potentials: 

 
. 0∇ =A       (1.120) 

 
The vector potential itself can be expanded into the 
modes an of the closed resonator structure: 

n n
n

(r, t) q (t) (r)= ∑A a     (1.121) 

 
where the an are required to satisfy the equation: 

 
2 2

n n( /c) (r) 0⎡ ⎤
⎢ ⎥⎣ ⎦
∇ + ω =a     (1.122) 

 
where the ωn are the structure eigenfrequencies.    Also, 
the an form a complete orthogonal set of basis vectors 
and we choose: 
 

0 3
n nm2 d r ( ). ( ) Uε = δ∫ *

n ma r a r     (1.123) 
  

where Un is a normalizing factor and δ is the usual 
kronecker delta function.  
This allows the wave equation to be rewritten in the 
form: 

 
22 3 30

n n n2
d 1U q (t) d r (r,t). (r, t) d r (r, t). (r,t)2 2 tdt

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

ε ∂ω + = − ∇Φ
∂∫ ∫* *

n na j a (1.124) 

 
The second volume integral is transformed into a 
surface integral by Gauss’ theorem and this vanishes 
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due to the boundary conditions imposed on Φ.  Here, 
* *
n n. ( ) . ( )∇Φ = ∇ Φ −Φ∇ = ∇ Φ* *

n na a a a  has been used and the 
Coulomb gauge has been applied once more.   Thus, the 
Fourier transform of the expansion coefficient is 
obtained as: 
 

3 *
n n n2n n

1 1q ( ) dtq (t)exp( i t) d r . (r, )2U
∞

−∞
ω = − ω = ω

ω−ω∫ ∫ a j   (1.125) 

 
The Fourier transform of the vector potential is: 
 

n nq ( ) ( )ω ω∑
n

A(r, ) = a r     (1.126) 

 
The scalar potential is also expanded into a complete 
orthonormal system: 

 
n nr ( ) ( )Φ ω ω φ∑

n
(r, ) = r     (1.127) 

 
and φ satisfy the equation: 

 
2 2

n n( /c) (r) 0⎡ ⎤
⎢ ⎥⎣ ⎦
∇ + Ω φ =     (1.128) 

  
with  boundary conditions that φ is zero on the surface 
surrounding the volume of the cavity.   The 
orthogonalisation condition is chosen to define T such 
that: 
 

( )2 3 *0
n n m n nm/c d r (r) (r) T2

ε
Ω φ φ = δ∫    (1.129) 
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This allows the expansion coefficients of Φ to be 
obtained as: 
 

( ) 1 3 *
n n nr (t) 2T d r (r) (r, t)

−
= φ ρ∫     (1.130) 

 
Evaluation of Impedance: 

 
The longitudinal impedance is defined as: 

 
z

1Z(x,y,s) dzE ( , )exp(i z /c)q
∞

−∞
= ω ω∫ r    (1.131) 

 
The electric field ( , ) i ( , ) ( , )ω = ω ω −∇Φ ωΕ r A r r  is excited by a 
charge q and here we consider a point charge moving 
parallel to the z-axis: 
 

0 0( , t) q (z ct) (x x ) (y y )ρ = δ − δ − δ −r      
z( , t) c ( , t)= ρj r e r      (1.132) 

 
The Fourier transform of the charge density and 
current are given by: 
 

0 0
q( , ) exp( i z /c) (x x ) (y y )cρ ω = − ω δ − δ −r  

z 0 0j ( , ) qexp( i z/c) (x x ) (y y )ω = − ω δ − δ −r   (1.133) 
 

Making use of the relations for rn and qn, derived above 
then the electric field is obtained as: 
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*
n nz 0 02 2 nn n

*
n 0 0

n

i 1r, ) q (r) dz'a (x ,y ,z')exp( i z'/c)2U
q (x ,y ,z')exp( i z'/c)c

∞

−∞

− ωω = − ω
ω −ω

− ∇φ − ω

∑ ∫

∑

E( a
 (1.134) 

 
The complex voltages are defined: 
 

n znV (x,y, ) dza (x,y,z)exp(i z /c)
∞

−∞
ω = ω∫  

n nv (x,y, ) dz (x,y,z) exp(i z /c)z
∞ ⎛ ⎞

⎜ ⎟
⎜ ⎟
⎝ ⎠−∞

∂ω = φ ω
∂∫   (1.135) 

 
Thus the longitudinal impedance is written as: 
 

*
n n0 0 02 2 nn n

*
n n 0 0nn

i 1Z (x,y, ) V (x,y, )V (x ,y , )2U
i 1 v (x,y, )v (x ,y , )2T

− ωω = ω ω
ω −ω

+ ω ωω

∑

∑
  (1.136) 

 
where the following relation, derived by integrating by 
parts, has been used: 
 

*
n 0 0 0 0

1 idz (x ,y ,z)exp( i z /c) dz (x ,y ,z) exp( i z /c)c z
∞ ∞ ⎛ ⎞

⎜ ⎟
⎜ ⎟
⎝ ⎠−∞ −∞

∂φ − ω = − φ − ωω ∂∫ ∫
(1.137) 

 
and the condition φn =0 at the boundary has been 
invoked. 
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The longitudinal Wake Potential is obtained by the 
inverse transform of the impedance: 

C
1W (x,y,s) d Z(x,y, )exp(i s /c)2= ω ω ω
π ∫   (1.138) 

 
 
 
 
 
 
 
 
 
 
 
 
 
We integrate around the closed contour indicated and 
for s>0 we close the contour in the upper half plane and 
for s<0 we close the contour in the lower half plane.    
The second term of the impedance (which occurs due to 
the scalar potential) has a pole at ω=0 but it does not 
contribute to the wake because: 
 

n n n boundary
v (x,y,0) dz (x,y,z) (x,y,z)z

∞ ⎛ ⎞
⎡ ⎤⎜ ⎟
⎢ ⎥⎜ ⎟ ⎣ ⎦

⎝ ⎠−∞

∂= φ = φ
∂∫  (1.139) 

Thus the wake function is given as: 
 

*
n n n n n0 0nn

*
n n n n n0 0

1W (x,y,s) [V (x,y, )V (x ,y , )exp(i s /c)4U
V (x,y, )V (x ,y , )exp( i s /c)]

= ω ω ω

+ −ω −ω − ω

∑  (1.140) 

 
We are at liberty to choose real eigenvectors an and this 
makes: 

C 

Reω ωn -ωn 

Imω 

C 

Reω 0 

Imω 
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*
n nV (x,y, ) V (x,y, )−ω = ω     (1.141) 

 
 
 
and we will specialize to the case {x,y} = {x0,y0} to give: 
 

2
n n

n
nn

|V (x,y, ) |W (x,y,s) 2 cos( s /c) s 04U
ω= ω ∀ >∑   (1.142) 

 
The loss parameter, of the transverse mode is given by: 
 

2
n n n n|V (x,y, ) | /(4U )κ = ω    (1.143) 

 
It remains to calculate the wakefield at s = 0: 
 

0
C

1W (x,y,0) d (x,y, )2 0= ωΖ ω
π ∫    (1.144) 

 
The impedance function is an odd function 
( 0 0Z (x,y, ) Z (x,y, )ω = − −ω ) and thus it must be evaluated for 
the two contours C1 and C2 which consist of semi-circles 
with radius ε (where the limit ε->0 will be taken).   
 
 
 
 
 
 
 
 

Im{ω} 

C1 C2 

-ωn  ωn Re{ω} 
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The contour C1 gives: 
 

1 1

2 2
n n

2 2C C nn nn
i 2

n n
n0

n

| V (x,y, ) | |V (x,y, ) |1 1 1 1d d2 2U 2 2Ui
i |V (x,y, e ) |1 1 d2 4Ui

1
2

π φ

ω ω−ωω = ωω+ωπ πω −ω
ω −ε= φ

π

= κ

∫ ∫

∫ (1.145) 

 
 
 
Similarly for the contour C2 and thus in general the 
longitudinal wakefield is given by: 
 

n n
n

W (s) (s) 2 cos( s /c)= θ κ ω∑    (1.146) 
0 s 0

(s) 1/2 s 0
1 s 0

⎧
⎪⎪
⎨
⎪
⎪⎩

<
θ = =

>
 

 
Causality is expressed in this equation by the fact that 
the wakefield is zero ahead of the driving bunch.  
Further, what is sometimes called the fundamental 
theorem of beam loading is expressed by the factor of ½ 
which describes the wakefield felt by the driving bunch 
itself. 
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