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Historical Overview
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Perfect Conductivity

Kamerlingh Onnes and van der Waals 
in Leiden with the helium 'liquefactor' 

(1908) 
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Perfect Conductivity 
Persistent current experiments on rings have measured
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Perfect conductivity is not superconductivity

Superconductivity is a phase transition

A perfect conductor has an infinite relaxation time L/R

Resistivity < 10-23 Ω.cm

Decay time > 105 years
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Perfect Diamagnetism (Meissner & Ochsenfeld 1933)

0B
t

∂ =
∂

0B =

Perfect conductor Superconductor



Page 6

Penetration Depth in Thin Films

Very thin films

Very thick films
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Critical Field (Type I)
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Superconductivity is destroyed by the application of a magnetic field

Type I or “soft” superconductors
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Critical Field (Type II or “hard” superconductors)

Expulsion of the magnetic field is complete up to Hc1, and partial up to Hc2

Between Hc1 and Hc2 the field penetrates in the form if quantized vortices 
or fluxoids
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Thermodynamic Properties

Entropy Specific Heat

Energy Free Energy
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Thermodynamic Properties
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Thermodynamic Properties
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The quadratic dependence of critical field on T is 
related to the cubic dependence of specific heat

Energy Difference Between Normal and 
Superconducting State



Page 13

Isotope Effect (Maxwell 1950)

The critical temperature and the critical field at 0K are dependent 
on the mass of the isotope

(0) with  0.5c cT H M a a-∼ ∼
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Energy Gap (1950s)

At very low temperature the specific heat exhibits an exponential behavior

Electromagnetic absorption shows a threshold

Tunneling between 2 superconductors separated by a thin oxide film 
shows the presence of a gap

/ 1.5      with cbT T
sc e b-μ
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Two Fundamental Lengths

• London penetration depth λ
– Distance over which magnetic fields decay in 

superconductors
• Pippard coherence length ξ

– Distance over which the superconducting state decays
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Two Types of Superconductors

• London superconductors (Type II)
– λ>> ξ
– Impure metals
– Alloys
– Local electrodynamics

• Pippard superconductors (Type I)
– ξ >> λ
– Pure metals
– Nonlocal electrodynamics
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Material Parameters for Some Superconductors



Page 18

Phenomenological Models (1930s to 1950s)

Phenomenological model:
Purely descriptive

Everything behaves as though…..

A finite fraction of the electrons form some kind of condensate 
that behaves as a macroscopic system (similar to superfluidity)

At 0K, condensation is complete

At Tc the condensate disappears
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Two Fluid Model – Gorter and Casimir
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Two Fluid Model – Gorter and Casimir
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Superconducting state:

Normal state:

Recall   difference in free energy between normal and 

superconducting state
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The Gorter-Casimir model is an “ad hoc” model (there is no physical basis 
for the assumed expression for the free energy) but provides a fairly 
accurate representation of experimental results
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Model of F & H London (1935)

Proposed a 2-fluid model with a normal fluid and superfluid components

ns : density of the superfluid component of velocity vs
nn : density of the normal component of velocity vn

2

superelectrons are accelerated by 

superelectrons

normal electrons
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Model of F & H London (1935)
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Model of F & H London (1935)

combine with 0 sB = Jm—¥

( ) [ ]

2
2 0

1
2

2
0

- 0

exp /

s

o L

L
s

n e
B B

m

B x B x

m
n e

m

l

l
m

— =

= -

È ˘
= Í ˙
Î ˚

The magnetic field, and the current, decay 
exponentially over a distance λ (a few 10s of nm)
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From Gorter and Casimir two-fluid model

Model of F & H London (1935)
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Model of F & H London (1935)
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Penetration Depth in Thin Films

Very thin films

Very thick films
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Quantum Mechanical Basis for London Equation
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Pippard’s Extension of London’s Model
Observations:

-Penetration depth increased with reduced mean free path

- Hc and Tc did not change

-Need for a positive surface energy over 10-4 cm to explain 
existence of normal and superconducting phase in 
intermediate state

Non-local modification of London equation 
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London and Pippard Kernels
Apply Fourier transform to relationship between 
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Effective penetration depth 
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London Electrodynamics

Linear London equations

together with Maxwell equations

describe the electrodynamics of superconductors at all T if:
– The superfluid density ns is spatially uniform
– The current density Js is small

2
2 2

0

1 0sJ E H H
t l m l

∂
= - — - =

∂

0s
HH J E
t

m ∂—¥ = —¥ = -
∂



Page 31

Ginzburg-Landau Theory

• Many important phenomena in superconductivity occur 
because ns is not uniform
– Interfaces between normal and superconductors
– Trapped flux
– Intermediate state

• London model does not provide an explanation for the 
surface energy (which can be positive or negative)

• GL is a generalization of the London model but it still 
retain the local approximation of the electrodynamics
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Ginzburg-Landau Theory

• Ginzburg-Landau theory is a particular case of 
Landau’s theory of second order phase transition

• Formulated in 1950, before BCS

• Masterpiece of physical intuition

• Grounded in thermodynamics

• Even after BCS it still is very fruitful in analyzing the 
behavior of superconductors and is still one of the 
most widely used theory of superconductivity



Page 33

Ginzburg-Landau Theory

• Theory of second order phase transition is based on 
an order parameter which is zero above the transition 
temperature and non-zero below

• For superconductors, GL use a complex order 
parameter Ψ(r) such that |Ψ(r)|2 represents the 
density of superelectrons

• The Ginzburg-Landau theory is valid close to Tc
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Ginzburg-Landau Equation for Free Energy

• Assume that Ψ(r) is small and varies slowly in 
space

• Expand the free energy in powers of Ψ(r) and its 
derivative

2 2
2 4

0
1

2 2 8n
e hf f

m i c
ba y y y

p

*

*

Ê ˆ
= + + + — - +Á ˜Ë ¯

A



Page 35

Field-Free Uniform Case

Near Tc we must have 

At the minimum
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Field-Free Uniform Case

At the minimum
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It is consistent with correlating |Ψ(r)|2 with the density of superelectrons

2 (1 ) cnear Tsn tl-μ μ -

which is consistent with 2
0 (1 )c cH H t= -



Page 37

Field-Free Uniform Case

Identify the order parameter with the density of superelectrons
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Field-Free Nonuniform Case

Equation of motion in the absence of electromagnetic 
field
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Field-Free Nonuniform Case
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2 Fundamental Lengths

London penetration depth: length over which magnetic field decay

Coherence length: scale of spatial variation of the order parameter 
(superconducting electron density)
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Surface Energy
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Surface Energy
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Magnetization Curves
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Intermediate State

Vortex lines in 
Pb.98In.02At the center of each vortex is a 

normal region of flux h/2e
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Critical Fields
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Even though it is more energetically favorable for a type I superconductor 
to revert to the normal state at Hc, the surface energy is still positive up to 
a superheating field Hsh>Hc → metastable superheating region in which 
the material may remain superconducting for short times.
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Superheating Field
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The exact nature of the rf critical 
field of superconductors is still 

an open question
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Material Parameters for Some Superconductors
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BCS

• What needed to be explained and what were the 
clues?

– Energy gap  (exponential dependence of specific heat) 

– Isotope effect (the lattice is involved)

– Meissner effect
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Cooper Pairs

Assumption:  Phonon-mediated attraction between   
electron of equal and opposite momenta located 
within          of   Fermi surface

Moving electron distorts lattice and leaves behind a 
trail of positive charge that attracts another electron 
moving in opposite direction

Fermi ground state is unstable

Electron pairs can form bound 
states of lower energy

Bose condensation of overlapping
Cooper pairs into a coherent
Superconducting state

Dw
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Cooper Pairs

One electron moving through the lattice attracts the positive ions.

Because of their inertia the maximum displacement will take place

behind.
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BCS

The size of the Cooper pairs is much larger than their spacing

They form a coherent state
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BCS and BEC



Page 53

BCS Theory
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BCS

• Hamiltonian

• Ground state wave function

  destroys an electron of momentum 
  creates an electron of momentum 

 number of electrons of momentum 
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BCS

• The BCS model is an extremely simplified model of reality
– The Coulomb interaction between single electrons is ignored
– Only the term representing the scattering of pairs is retained
– The interaction term is assumed to be constant over a thin 

layer at the Fermi surface and 0 everywhere else
– The Fermi surface is assumed to be spherical

• Nevertheless, the BCS results (which include only a very few 
adjustable parameters) are amazingly close to the real world
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BCS
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BCS
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BCS Condensation Energy
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BCS Energy Gap

At finite temperature:

Implicit equation for the temperature dependence of the gap:
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BCS Excited States
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2 22k

Energy of excited states:
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BCS Specific Heat
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Electrodynamics and Surface Impedance 
in BCS Model
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Penetration Depth
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Surface Resistance
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Surface Resistance
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Surface Resistance
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Surface Resistance
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Surface Impedance - Definitions

• The electromagnetic response of a metal, 
whether normal or superconducting, is 
described by a complex surface 
impedance,   Z=R+iX

R :  Surface resistance
X :  Surface reactance

Both R and X are real
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Definitions

For a semi- infinite slab:
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Definitions

The surface resistance is also related to the power flow 
into the conductor

and to the power dissipated inside the conductor
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Normal Conductors (local limit)

Maxwell equations are not sufficient to model the 
behavior of electromagnetic fields in materials.  
Need an additional equation to describe material 
properties
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Normal Conductors (local limit)

In the local limit

The fields decay with a characteristic 
length (skin depth)

( ) ( )J z E zs=

/ /

0

1/2

0
0

( ) (0)
(1 )( ) ( )
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E i iZ i
H

d d

m w d

m wm wd
s d s

- -=
-=

Ê ˆ+ += = = = + Á ˜Ë ¯
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Ê ˆ
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Normal Conductors (anomalous limit)
• At low temperature, experiments show that the surface 

resistance becomes independent of the conductivity

• As the temperature decreases, the conductivity σ increases
– The skin depth decreases 

– The skin depth (the distance over which fields vary) can 
become less then the mean free path of the electrons (the 
distance they travel before being scattered)

– The electrons do not experience a constant electric field 
over a mean free path

– The local relationship between field and current is not 
valid ( ) ( )J z E zsπ

1/2

0

2d
m ws

Ê ˆ
= Á ˜Ë ¯
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Normal Conductors (anomalous limit)

Introduce a new relationship where the current is related to 
the electric field over a volume of the size of the mean 
free path (l)

Specular reflection: Boundaries act as perfect mirrors
Diffuse reflection: Electrons forget everything

/
4

( , / )3( , )
4

with  F R l

V

R R E r t R v
J r t dr e R r r

l R
s
p

-
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Normal Conductors (anomalous limit)

In the extreme anomalous limit

( )
1/32 2

09
1 08

3 1 3
16

1 :
  :  fraction of electrons specularly scattered at surface

 fraction of electrons diffusively scattered

p p
lZ Z i

p
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m w
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1/3
5 2/3( ) 3.79 10 lR l w

s
- Ê ˆÆ • = ¥ Á ˜Ë ¯

For Cu: 16/ 6.8 10 2ml s -= ¥ W◊

1/3
5 2/3

0

3.79 10
(4.2 ,500 ) 0.12
(273 ,500 )

2

 K  MHz
 K  MHz

l
R
R

w
s

m w
s

- Ê ˆ¥ Á ˜Ë ¯
= ª

Does not compensate for the Carnot efficiency

Normal Conductors (anomalous limit)
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Surface Resistance of Superconductors

Superconductors are free of power dissipation in static fields.

In microwave fields, the time-dependent magnetic field in the 
penetration depth will generate an electric field. 

The electric field will induce oscillations in the normal 
electrons, which will lead to power dissipation

BE
t

∂—¥ = -
∂
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Surface Impedance in the Two-Fluid Model
In a superconductor, a time-dependent current will be carried 
by the Copper pairs (superfluid component) and by the 
unpaired electrons (normal component)

0
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Surface Impedance in the Two-Fluid Model

For normal conductors 1
sR

sd
=

For superconductors

( ) 2 2 2

1 1 1n n
s

L n s L n s L s

R
i

s s
l s s l s s l s
È ˘

= ¬ =Í ˙+ +Î ˚

The superconducting state surface resistance is proportional to the 
normal state conductivity
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Surface Impedance in the Two-Fluid Model

2

2

2
0

3 2

1

( ) 1exp

( )exp

n
s

L s

n
n s

e F L

s L

R

n e l Tl
m v kT

TR l
kT

s
l s

s s
m l w

l w

DÈ ˘= μ - =Í ˙Î ˚

DÈ ˘μ -Í ˙Î ˚

This assumes that the mean free path is much larger than the 
coherence length
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Surface Impedance in the Two-Fluid Model

For niobium we need to replace the London penetration depth with

1 /L ll xL = +

As a result, the surface resistance shows a minimum when

lx ª
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Surface Resistance of Niobium
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Electrodynamics and Surface Impedance 
in BCS Model

( )

[ ] ( )
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There is, at present, no model for 
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Surface Resistance of Superconductors

( )
( )
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  is a good approximation

c

c

s

T

tt
t

TT

AR
T

l

w

w

D

-

-

- <

DÊ ˆ-Á ˜Ë ¯

∼

∼



Page 85

Surface Resistance of Superconductors

• The surface resistance of superconductors depends on 
the frequency, the temperature, and a few material 
parameters
– Transition temperature
– Energy gap 
– Coherence length
– Penetration depth
– Mean free path

• A good approximation for T<Tc/2 and ω<<Δ/h is 

2 exps res
AR R
T kT
w DÊ ˆ- +Á ˜Ë ¯

∼



Page 86

Surface Resistance of Superconductors

2 exps res
AR R
T kT
w DÊ ˆ- +Á ˜Ë ¯

∼

In the dirty limit

In the clean limit

Rres:

Residual surface resistance

No clear temperature dependence

No clear frequency dependence

Depends on trapped flux, impurities, grain boundaries, …

1/2
0 BCSl R lx -μ

0 BCSl R lx μ
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Surface Resistance of Superconductors
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Surface Resistance of Niobium
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Surface Resistance of Niobium
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Super and Normal Conductors

• Normal Conductors
– Skin depth proportional to ω-1/2

– Surface resistance proportional to ω1/2 → 2/3

– Surface resistance independent of temperature (at low T)
– For Cu at 300K and 1 GHz, Rs=8.3 mΩ

• Superconductors
– Penetration depth independent of ω
– Surface resistance proportional to ω2

– Surface resistance strongly dependent of temperature
– For Nb at 2 K and 1 GHz, Rs≈7 nΩ

However: do not forget Carnot
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RF Cavity

• Mode transformer (TEM→TM)

• Impedance transformer (Low Z→High Z)

• Space enclosed by conducting walls that can sustain an 
infinite number of resonant electromagnetic modes

• Shape is selected so that a particular mode can 
efficiently transfer its energy to a charged particle

• An isolated mode can be modeled by an LRC circuit



Page 92

RF Cavity

Lorentz force

An accelerating cavity needs to provide an electric field E longitudinal 
with the velocity of the particle

Magnetic fields provide deflection but no acceleration

DC electric fields can provide energies of only a few MeV

Higher energies can be obtained only by transfer of energy from 
traveling waves →resonant circuits

Transfer of energy from a wave to a particle is efficient only is both 
propagate at the same velocity

( )F q E v B= + ¥
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Equivalent Circuit for an rf Cavity

Simple LC circuit representing an 
accelerating resonator

Metamorphosis of the LC circuit into 
an accelerating cavity

Chain of weakly coupled pillbox 
cavities representing an accelerating 
module

Chain of coupled pendula as its 
mechanical analog
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Electromagnetic Modes

Electromagnetic modes satisfy Maxwell equations

With the boundary conditions (assuming the walls are 
made of a material of low surface resistance)

no tangential electric field

no normal magnetic field

2
2

2 2

1 0
E

c t H
Ï ¸Ê ˆ∂— - =Ì ˝Á ˜∂Ë ¯ Ó ˛

0

0

n E
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Electromagnetic Modes

Assume everything 

For a given cavity geometry, Maxwell equations have an infinite number 
of solutions with a sinusoidal time dependence

For efficient acceleration, choose a cavity geometry and a mode where:

Electric field is along particle trajectory

Magnetic field is 0 along particle trajectory

Velocity of the electromagnetic field is matched to particle velocity

2
2

2 0
E

c H
w Ï ¸Ê ˆ

— + =Ì ˝Á ˜Ë ¯ Ó ˛

i te w-∼
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Accelerating Field (gradient)

Voltage gained by a particle divided by a reference length

For velocity-of-light particles

For less-than-velocity-of-light cavities, there is no universally 
adopted definition of the reference length

1 ( )cos( / )zE E z z c dz
L

w b= Ú

2
NL l=
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Design Considerations 
,max

,max

2

2

2

2

2

minimum critical field

minimum field emission

minimum shunt impedance, current losses

minimum dielectric losses

minimum control of microphonics             
maximum
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      voltage drop for high charge per bunch
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Energy Content

Energy density in electromagnetic field:

Because of the sinusoidal time dependence and the 90º 
phase shift, he energy oscillates back and forth between 
the electric and magnetic field

Total energy content in the cavity:

( )2 2
0 0

1
2

u e m= +E H

2 20 0

2 2V V
U dV dV

e m
= =Ú ÚE H
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Power Dissipation

Power dissipation per unit area

Total power dissipation in the cavity walls

2 20

4 2
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Quality Factor

Quality Factor Q0: 

0
0

0
0 0

0

Energy stored in cavity
Energy dissipated in cavity walls per radian diss

U
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P
w

ww t
w

∫ =
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Geometrical Factor

Geometrical Factor QRs (Ω)
Product of the Quality Factor and the surface resistance
Independent of size and material
Depends only on shape of cavity and electromagnetic mode

2 2 2

0
0 2 2 2

0

1 22

377 Impedance of vacuum

V V V
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Shunt Impedance, R/Q

Shunt impedance Rsh: 

Vc = accelerating voltage

Note: Sometimes the shunt impedance is defined as 
or quoted as impedance per unit length (ohm/m)

R/Q (in Ω)

2

in c
sh

diss

V
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P
∫ W     

2

2
c

diss
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Q – Geometrical Factor (Q Rs)

3
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0
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Energy contentQ:
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Rough estimate (factor of 2) for fundamental mode
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ze (frequency) and material independent. 
It depends only on the mode geometry 
It is independent of number of cells
For superconducting elliptical cavities  sQR W∼
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Shunt Impedance (Rsh), Rsh Rs, R/Q

( )

2 22

2 2
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1 1
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In practice for elliptical cavities
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Power Dissipated per Unit Length or Unit Area 
2
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For normal conductors

For superconductors
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External Coupling
• Consider a cavity connected to 

an rf source

• A coaxial cable carries power 
from an rf source to the cavity

• The strength of the input 
coupler is adjusted by changing 
the penetration of the center 
conductor

• There is a fixed output coupler, 
the transmitted power probe, 
which picks up power 
transmitted through the cavity.  
This is usually very weakly 
coupled
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Cavity with External Coupling

Consider the rf cavity after the rf is turned off.
Stored energy U satisfies the equation:

Total power being lost, Ptot, is: 

Pe is the power leaking back out the input coupler.  
Pt is the power coming out the transmitted power coupler. 

Typically Pt is very small ⇒ Ptot ≈ Pdiss + Pe

Recall 

Similarly define a “loaded” quality factor QL: 

Now

∴ energy in the cavity decays exponentially with time constant:       

tot diss e tP P P P= + +
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Cavity with External Coupling

Equation 

suggests that we can assign a quality factor to each loss mechanism, 
such that 

where, by definition, 

Typical values for CEBAF 7-cell cavities: Q0=1x1010, Qe ≈QL=2x107.

0 0

tot diss eP P P
U Uw w

+
=

0

1 1 1

L eQ Q Q
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Cavity with External Coupling

• Define “coupling parameter”:

therefore

β is equal to:

• It tells us how strongly the couplers interact with the cavity. Large β
implies that the power leaking out of the coupler is large compared 
to the power dissipated in the cavity walls.  

0

e

Q
Q

b ∫     

0

1 (1 )
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e
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Several Loss Mechanisms

(

1 1
L

i

       -wall losses
    -power absorbed by beam
    -coupling to outside world

Associate  Q will each loss mechanism

index 0 is reserved for wall losses)
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Simple LC circuit representing 
an accelerating resonator

Metamorphosis of the LC circuit 
into an accelerating cavity

Chain of weakly coupled pillbox 
cavities representing an accelerating 
cavity

Chain of coupled pendula as 
its mechanical analogue 

Equivalent Circuit for an rf Cavity
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Parallel Circuit Model of an Electromagnetic Mode

• Power dissipated in resistor R:   

• Shunt impedance:  

• Quality factor of resonator: 

21
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1-Port System
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1-Port System
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1-Port System
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1-Port System
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Equivalent Circuit for a Cavity with Beam

• Beam in the rf cavity is represented by a current 
generator. 

• Equivalent circuit: 

(1 )
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Equivalent Circuit for a Cavity with Beam

1/2
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Equivalent Circuit for a Cavity with Beam

( ) [ ]{ }
2

221
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Frequency Control

Energy gain

Energy gain error

The fluctuations in cavity field amplitude and phase come mostly 
from the fluctuations in cavity frequency

Need for fast frequency control

Minimization of rf power requires matching of average cavity 
frequency to reference frequency

Need for slow frequency tuners

cosW qV f=

tanW V
W V
d d df f= -
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Some Definitions

• Ponderomotive effects: changes in frequency caused by the 
electromagnetic field (radiation pressure)
– Static Lorentz detuning (cw operation)
– Dynamic Lorentz detuning (pulsed operation)

• Microphonics: changes in frequency caused by connections to 
the external world
– Vibrations
– Pressure fluctuations

Note:  The two are not completely independent.
When phase and amplitude feedbacks are active, ponderomotive 
effects can change the response to external disturbances
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Cavity with Beam and Microphonics
• The detuning is now

0 0

0 0

0

0tan 2 tan 2

where  is the static detuning (controllable)

and  is the random dynamic detuning (uncontrollable)

m
L L

m

Q Q
dw dw dw

y y
w w

dw
dw

±
= - = -



Page 123

Qext Optimization with Microphonics
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Example
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Example
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Lorentz Detuning

Pressure deforms the cavity wall:

Outward pressure at the 
equator

Inward pressure at 
the iris

2 2
0 0

2

4

 

RF power produces radiation pressure: 

Deformation produces a frequency shift: 
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m e-
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D = -



Page 127

Lorentz Detuning
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Microphonics
• Total detuning

0

0

where  is the static detuning (controllable)

and  is the random dynamic detuning (uncontrollable)m

m

dw
dw

dw dw+
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Ponderomotive Effects

• Adiabatic theorem applied to harmonic oscillators (Boltzmann-
Ehrenfest)

2

/
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Ponderomotive Effects
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Ponderomotive Effects

2

2

2

1
2

1
2

Equation of motion of mechanical mode 
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Ponderomotive Effects
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Ponderomotive Effects – Mechanical Modes

Fluctuations around steady state:
0 (1 )

o

V V v
m m mw w dw

d
D = D +

= +
Linearized equation of motion for mechanical mode:

2 2 2
0

2 2 k V vm m m m m m
m

dw dw dw d
t

+ +W = - W

The mechanical mode is driven by fluctuations in the electromagnetic mode 
amplitude.

Variations in the mechanical mode amplitude causes a variation of the 
electromagnetic mode frequency, which can cause a variation of its amplitude.

→Closed feedback system between electromagnetic and mechanical modes, 
that can lead to instabilities.
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2 k V n tm m m m m m
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w w w
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Lorentz Transfer Function

TEM-class cavities 
ANL, single-spoke, 354 MHz, β=0.4

simple spectrum with 
few modes
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Lorentz Transfer Function
TM-class cavities  (Jlab, 6-cell elliptical, 805 MHz, β=0.61)

Rich frequency spectrum from low to high frequencies
Large variations between cavities
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GDR and SEL
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Generator-Driven Resonator

• In a generator-driven resonator the coupling between the 
electromagnetic and mechanical modes can lead to two 
ponderomotive instabilities

• Monotonic instability : Jump phenomenon where the 
amplitudes of the electromagnetic and mechanical modes 
increase or decrease exponentially until limited by non-linear 
effects

• Oscillatory instability : The amplitudes of both modes oscillate 
and increase at an exponential rate until limited by non-linear 
effects
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Self-Excited Loop-Principle of Stabilization
Controlling the external phase shift θl can compensate for the 
fluctuations in the cavity frequency ωc so the loop is phase locked to an 
external frequency reference ωr.

Instead of introducing an additional external controllable phase shifter, 
this is usually done by adding a signal in quadrature

→ The cavity field amplitude is unaffected by the phase stabilization 
even in the absence of amplitude feedback. Aq A

Ap

φ

tan
2

c
c lQ

ww w q= +
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Self-Excited Loop

• Resonators operated in self-excited loops in the absence 
of feedback are free of ponderomotive instabilities.  An 
SEL is equivalent to the ideal VCO.
– Amplitude is stable 
– Frequency of the loop tracks the frequency of the cavity

• Phase stabilization can reintroduce instabilities, but they 
are easily controlled with small amount of amplitude 
feedback
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Input-Output Variables

• Generator - driven cavity

• Cavity in a self-excited loop

Detuning (ω - ωc)

Field amplitude (Vo)Generator amplitude (Vg)

Cavity phase shift (θl)

Ponderomotive
effects

Loop phase shift (θl)

Field amplitude (Vo)Limiter output (Vg)

Loop frequency (ω)

Pondermotive
effects



Page 141

Lorentz Detuning
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During transient operation (rise time and decay time) the loop 
frequency automatically tracts the resonator frequency.  Lorentz 
detuning has no effect and is automatically compensated 
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Microphonics

• Microphonics: changes in frequency caused by 
connections to the external world
– Vibrations
– Pressure fluctuations

When phase and amplitude feedbacks are 
active, ponderomotive effects can change the 
response to external disturbances

( )2 2 2
0

2 2 k V v n tm m m m m m
m

dw dw dw d
t

+ +W = - W +
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Microphonics

Two extreme classes of driving terms:

• Deterministic, monochromatic
– Constant, well defined frequency
– Constant amplitude

• Stochastic
– Broadband (compared to bandwidth of mechanical 

mode)
– Will be modeled by gaussian stationary white noise 

process



Page 144

Microphonics (probability density)

Single gaussian

Noise driven

Bimodal

Single-frequency driven

Multi-gaussian

Non-stationary noise

805 MHz TM 805 MHz TM 172 MHz TEM
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Microphonics (frequency spectrum)
TM-class cavities  (JLab, 6-cell 

elliptical, 805 MHz, β=0.61)
Rich frequency spectrum from 

low to high frequencies
Large variations between 

cavities

TEM-class cavities (ANL, single-spoke, 
354 MHz, β=0.4)
Dominated by low frequency (<10 Hz) 
from pressure fluctuations 
Few high frequency mechanical 
modes that contribute little to 
microphonics level.
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Probability Density (histogram)

Harmonic oscillator (Ωμ,τμ) driven by:

Single frequency, constant amplitude White noise, gaussian
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Autocorrelation Function
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Single frequency, constant amplitude White noise, gaussian
Harmonic oscillator (Ωμ,τμ) driven by:

/( )
( ) cos( )

(0)
R

r e
R

mt tdw
dw m

dw

tt t -= = W



Page 148

Stationary Stochastic Processes

x(t): stationary random variable

Autocorrelation function:

Spectral Density  Sx(ω):    Amount of power between  ω and dω

Sx(ω) and Rx(τ) are related through the Fourier Transform (Wiener-Khintchine)

Mean square value: 

0
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Stationary Stochastic Processes

For a stationary random process driving a linear 
system
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Performance of Control System

Residual phase and amplitude errors caused by 
microphonics

Can also be done for beam current amplitude and phase 
fluctuations

2

Assume a single mechanical oscillator of frequency and decay time 

excited by white noise of spectral density A
m mtW
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Performance of Control System
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The Real World
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The Real World
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The Real World
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Piezo control of microphonics

MSU, 6-cell elliptical 805 MHz, β=0.49 

Adaptive feedforward compensation
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Piezo Control of Microphonics

FNAL, 3-cell 3.9 GHz
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SEL and GDR

• SEL are best suited for high gradient, high-
loaded Q cavities operated cw.
– Well behaved with respect to ponderomotive instabilities
– Unaffected by Lorentz detuning at power up
– Able to run independently of external rf source
– Rise time can be random and slow (starts from noise)

• GDR are best suited for low-Q cavities operated 
for short pulse length.
– Fast predictable rise time
– Power up can be hampered by Lorentz detuning



Page 158

TESLA Control System
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Basic LLRF Block Diagram
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Low level rf control development

Concept for a LLRF control system
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Pulsed Operation

• Under pulsed operation Lorentz detuning can 
have a complicated dynamic behavior
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Pulsed Operation

• Fast piezoelectric tuners can be used to compensate the 
dynamic Lorentz detuning
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