25 Oct.-5 Nov. 2010

FUNDAMENTALS

SUPERCONDUCTIVITY SURFACE RESISTANCE RF and CAVITIES MICROPHONICS

Jean Delayen

Center for Accelerator Science Old Dominion University and Thomas Jefferson National Accelerator Facility

Historical Overview

Perfect Conductivity

Jefferson Lab

Kamerlingh Onnes and van der Waals in Leiden with the helium 'liquefactor' (1908)

Perfect Conductivity

Persistent current experiments on rings have measured

Resistivity < $10^{-23} \Omega.cm$

Decay time > 10⁵ years

Perfect conductivity is not superconductivity

Superconductivity is a phase transition

A perfect conductor has an infinite relaxation time L/R

Perfect Diamagnetism (Meissner & Ochsenfeld 1933)

FIG. 4. Case II of Fig. 3 according to Meissner. The superconductor, in contrast to the perfect conductor, has zero magnetic induction independently of the way in which the superconducting state has been reached.

B = 0

 $\overline{\partial t}$

 $\frac{\partial B}{\partial B} = 0$

The final state would depend on the serial order in which the specimen is brought

into the same external conditions.

Page 5

Penetration Depth in Thin Films

Critical Field (Type I)

Superconductivity is destroyed by the application of a magnetic field

Type I or "soft" superconductors

Critical Field (Type II or "hard" superconductors)

Figure 3-1 Phase diagram for a long cylinder of a Type II superconductor.

Expulsion of the magnetic field is complete up to H_{c1}, and partial up to H_{c2}

Between H_{c1} and H_{c2} the field penetrates in the form if quantized vortices or fluxoids

$$\phi_0 = \frac{\pi\hbar}{e}$$

Thermodynamic Properties

second order, the quantities S, U, and F are continuous at T_c . Moreover, the slope of F_{es} joins continuously to that of F_{en} at T_c , since $\partial F/\partial T = -S$.

Thermodynamic Properties

When $T < T_c$ phase transition at $H = H_c(T)$ is of 1^{st} order \Rightarrow latent heat

At $T = T_c$ transition is of 2^{nd} order \Rightarrow no latent heat jump in specific heat

 $C_{es}(T_c) \sim 3C_{en}(T_c)$

Jefferson Lab

 $C_{en}(T) = \gamma T$ electronic specific heat $C_{es}(T) \approx \alpha T^3$ reasonable fit to experimental data

Thermodynamic Properties

At T_c : $S_s(T_c) = S_n(T_c)$ The entropy is continuous

Recall:
$$S(0) = 0$$
 and $\frac{\partial S}{\partial T} = \frac{C}{T}$
 $\Rightarrow \int_{0}^{T_{c}} \frac{\alpha T^{3}}{T} dt = \int_{0}^{T_{c}} \frac{\gamma T}{T} dt \rightarrow \alpha = \frac{3\gamma}{T_{c}^{2}}$
 $C_{es} = 3\gamma \frac{T^{3}}{T_{c}^{2}}$
 $S_{s}(T) = \gamma \frac{T^{3}}{T_{c}^{3}}$
 $S_{n}(T) = \gamma \frac{T}{T_{c}}$

For $T < T_c$ $S_s(T) < S_n(T)$

Jefferson Lab

⇒ superconducting state is more ordered than normal state

A better fit for the electron specific heat in superconducting state is

$$C_{es} = a \gamma T_c \ e^{-\frac{bT_c}{T}}$$
 with $a \approx 9, b \approx 1.5$ for $T \ll T_c$

Energy Difference Between Normal and Superconducting State

 $U_n(T_c) = U_s(T_c)$ Energy is continuous $U_{n}(T) - U_{s}(T) = \int_{T}^{T_{c}} (C_{es} - C_{en}) dt = \frac{3}{4} \frac{\gamma}{T^{2}} (T_{c}^{4} - T^{4}) - \frac{\gamma}{2} (T_{c}^{2} - T^{2})$ at T=0 $U_n(0)-U_s(0)=\frac{1}{4}\gamma T_c^2=\frac{H_c^2}{8\pi}$ $\frac{H_c^2}{8\pi}$ is the condensation energy at $T \neq 0$, $\frac{H_c^2}{8\pi}$ is the free energy difference $\frac{H_c^2(T)}{8\pi} = \Delta F = (U_n - U_s) - T(S_n - S_c) = \frac{1}{4}\gamma T_c^2 \left[1 - \left(\frac{T}{T_c}\right)^2\right]^2$ $H_c(T) = (2\pi\gamma)^{\frac{1}{2}} T_c \left[1 - \left(\frac{T}{T_c}\right)^2\right]$

The quadratic dependence of critical field on T is related to the cubic dependence of specific heat

Page 12

Isotope Effect (Maxwell 1950)

The critical temperature and the critical field at 0K are dependent on the mass of the isotope

$$T_c \sim H_c(0) \sim M^{-\alpha}$$
 with $\alpha \simeq 0.5$

Figure 26: The critical temperature of various tin isotopes.

At very low temperature the specific heat exhibits an exponential behavior

 $c_s \propto e^{-bT_c/T}$ with $b \simeq 1.5$

Electromagnetic absorption shows a threshold

Tunneling between 2 superconductors separated by a thin oxide film shows the presence of a gap

Two Fundamental Lengths

- London penetration depth λ
 - Distance over which magnetic fields decay in superconductors
- Pippard coherence length ξ

Jefferson Lab

Distance over which the superconducting state decays

Two Types of Superconductors

- London superconductors (Type II)
 - *–* λ>> ξ
 - Impure metals
 - Alloys
 - Local electrodynamics
- Pippard superconductors (Type I)
 - $-\xi >> \lambda$

- Pure metals
- Nonlocal electrodynamics

Material Parameters for Some Superconductors

Superconductor	$\lambda_L(0)$ (nm)	$\xi_0 (nm)$	к	$2\Delta(0)/kT_c$	$T_c(\mathbf{K})$
Al	16	1500	0.011	3.40	1.18
In	25	400	0.062	3.50	3.3
Sn	28	300	0.093	3.55	3.7
Pb	28	110	0.255	4.10	7.2
Nb	32	39	0.82	3.5-3.85	8.95-9.2
Та	35	93	0.38	3.55	4.46
Nb ₃ Sn	50	6	8.3	4.4	18
NbN	50	6	8.3	4.3	≤ 17
Yba ₂ Cu ₃ o _x	140	1.5	93	4.5	90

Phenomenological Models (1930s to 1950s)

Phenomenological model: Purely descriptive Everything behaves as though.....

A finite fraction of the electrons form some kind of condensate that behaves as a macroscopic system (similar to superfluidity)

At 0K, condensation is complete

At T_c the condensate disappears

Two Fluid Model – Gorter and Casimir

$$T < T_c$$
 $x =$ fraction of "normal" electrons
(1-x): fraction of "condensed" electrons (zero entropy)

Assume:
$$F(T) = x^{1/2} f_n(T) + (1-x) f_s(T)$$
 free energy
 $f_n(T) = -\frac{1}{2}\gamma T^2$
 $f_s(T) = -\beta = -\frac{1}{4}\gamma T_c^2$ independent of temperature
Minimization of $F(T)$ gives $x = \left(\frac{T}{T_c}\right)^4$
 $\Rightarrow F(T) = x^{1/2} f_n(T) + (1-x) f_s(T) = -\beta \left[1 + \left(\frac{T}{T_c}\right)^4\right]$
 $\Rightarrow C_{es} = 3\gamma \frac{T^3}{T_c^2}$

Page 19

JSA

Two Fluid Model – Gorter and Casimir

Superconducting state:
$$F(T) = x^{1/2} f_n(T) + (1-x) f_s(T) = -\beta \left[1 + \left(\frac{T}{T_c} \right)^T \right]$$

Normal state:

$$F(T) = f_n(T) = -\frac{\gamma}{2}T^2 = -2\beta \left(\frac{T}{T_c}\right)^2$$

Recall $\frac{H_c^2}{8\pi}$ = difference in free energy between normal and

superconducting state

$$= \beta \left[1 - \left(\frac{T}{T_c} \right)^2 \right]^2 \qquad \Rightarrow \quad \frac{H_c(T)}{H_c(0)} = 1 - \left(\frac{T}{T_c} \right)^2$$

The Gorter-Casimir model is an "ad hoc" model (there is no physical basis for the assumed expression for the free energy) but provides a fairly accurate representation of experimental results

Proposed a 2-fluid model with a normal fluid and superfluid components

 $n_{\rm s}$: density of the superfluid component of velocity v_s n_n : density of the normal component of velocity v_n

$$m\frac{\partial \vec{v}}{\partial t} = -e\vec{E}$$
 superelectrons are accelerated by E
$$\overline{J_s} = -en_s \, \vec{v}$$

$$\frac{\partial \vec{J}_s}{\partial t} = \frac{n_s e^2}{m} \vec{E} \qquad \text{superelectrons}$$

 $\vec{J}_n = \sigma_n \vec{E}$ normal electrons

$$\frac{\partial \vec{J}_s}{\partial t} = \frac{n_s e^2}{m} \vec{E}$$

Maxwell:
$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\Rightarrow \frac{\partial}{\partial t} \left(\frac{m}{n_s e^2} \vec{\nabla} \times \vec{J}_s + \vec{B} \right) = 0 \qquad \Rightarrow \frac{m}{n_s e^2} \vec{\nabla} \times \vec{J}_s + \vec{B} = \text{Constant}$$

Page 22

F&H London postulated:
$$\frac{m}{n_s e^2} \nabla \times \vec{J}_s + \vec{B} = 0$$

SJSA

combine with $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}_s$

$$\nabla^2 \, \vec{B} - \frac{\mu_0 \, n_s e^2}{m} \, \vec{B} = 0$$

$$B(x) = B_o \exp\left[-x/\lambda_L\right]$$
$$\lambda_L = \left[\frac{m}{\mu_0 n_s e^2}\right]^{\frac{1}{2}}$$

The magnetic field, and the current, decay exponentially over a distance λ (a few 10s of nm)

$$\lambda_L = \left[\frac{m}{\mu_0 n_s e^2}\right]^{\frac{1}{2}}$$

From Gorter and Casimir two-fluid model

$$n_s \propto \left[1 - \left(\frac{T}{T_c} \right)^4 \right]$$

$$\lambda_L(T) = \lambda_L(0) \frac{1}{\left[1 - \left(\frac{T}{T_C}\right)^4\right]^{\frac{1}{2}}}$$

FIG. 21. Penetration depth as a function of temperature. (After Shoenberg, Nature, 43, 433, 1939.)

London Equation: $\lambda^2 \nabla \times \vec{J}_s = -\frac{\vec{B}}{\mu_0} = -\vec{H}$ $\nabla \times \vec{A} = \vec{H}$ choose $\nabla \cdot \vec{A} = 0$, $A_n = 0$ on sample surface (London gauge)

$$\vec{J}_s = -\frac{1}{\lambda^2}\vec{A}$$

Jefferson Lab

Note: Local relationship between \vec{J}_s and \vec{A}

Penetration Depth in Thin Films

Quantum Mechanical Basis for London Equation

$$\vec{J}(r) = \sum_{n} \int \left\{ \frac{e\hbar}{2mi} \left[\psi^* \nabla_n \psi - \psi \nabla_n \psi^* \right] - \frac{e^2}{mc} \vec{A}(\vec{r}_n) \psi^* \psi \right\} \delta(r - r_n) dr_1 - dr_n$$

In zero field $\vec{A} = 0$ $\vec{J}(r) = 0$, $\psi = \psi_0$

Assume ψ is "rigid", ie the field has no effect on wave function

$$\vec{J}(r) = -\frac{\rho(r)e^2}{me} \vec{A}(r)$$
$$\rho(r) = n$$

Pippard's Extension of London's Model

Observations:

Jefferson Lab

- -Penetration depth increased with reduced mean free path
- H_c and T_c did not change
- -Need for a positive surface energy over 10⁻⁴ cm to explain existence of normal and superconducting phase in intermediate state

Non-local modification of London equation

Local:

$$\vec{J} = -\frac{1}{c\lambda}\vec{A}$$
Non local:

$$\vec{J}(r) = -\frac{3\sigma}{4\pi\xi_0\lambda c} \int \frac{\vec{R}\left[\vec{R}\cdot\vec{A}(r')\right]e^{-\frac{R}{\xi}}}{R^4}d\nu$$

$$\frac{1}{\xi} = \frac{1}{\xi_0} + \frac{1}{\ell}$$

Page 28

London and Pippard Kernels

Apply Fourier transform to relationship between

$$J(r)$$
 and $A(r)$: $J(k) = -\frac{c}{4\pi}K(k) A(k)$

Fig. 1. Comparison of supercurrent response to vector potential in London and Pippard theorics (schematic).

Effective penetration depth

Specular:

Jefferson Lab

$$\lambda_{eff} = \frac{2}{\pi} \int_{0}^{\infty} \frac{dk}{K(k) + k^{2}}$$

Diffuse:

London Electrodynamics

Linear London equations

$$\frac{\partial \vec{J}_s}{\partial t} = -\frac{\vec{E}}{\lambda^2 \mu_0} \qquad \nabla^2 \vec{H} - \frac{1}{\lambda^2} \vec{H} = 0$$

together with Maxwell equations

$$\nabla \times \vec{H} = \vec{J}_s \qquad \nabla \times \vec{E} = -\mu_0 \frac{\partial \vec{H}}{\partial t}$$

describe the electrodynamics of superconductors at all T if:

- The superfluid density n_s is spatially uniform
- The current density J_s is small

Ginzburg-Landau Theory

- Many important phenomena in superconductivity occur because n_s is not uniform
 - Interfaces between normal and superconductors
 - Trapped flux
 - Intermediate state
- London model does not provide an explanation for the surface energy (which can be positive or negative)
- GL is a generalization of the London model but it still retain the local approximation of the electrodynamics

Ginzburg-Landau Theory

- Ginzburg-Landau theory is a particular case of Landau's theory of second order phase transition
- Formulated in 1950, before BCS
- Masterpiece of physical intuition
- Grounded in thermodynamics
- Even after BCS it still is very fruitful in analyzing the behavior of superconductors and is still one of the most widely used theory of superconductivity

Ginzburg-Landau Theory

- Theory of second order phase transition is based on an order parameter which is zero above the transition temperature and non-zero below
- For superconductors, GL use a complex order parameter Ψ(r) such that |Ψ(r)|² represents the density of superelectrons
- The Ginzburg-Landau theory is valid close to T_c

Ginzburg-Landau Equation for Free Energy

- Assume that Ψ(r) is small and varies slowly in space
- Expand the free energy in powers of Ψ(r) and its derivative

$$f = f_{n0} + \alpha \left|\psi\right|^2 + \frac{\beta}{2} \left|\psi\right|^4 + \frac{1}{2m^*} \left|\left(\frac{\hbar}{i}\nabla - \frac{e^*}{c}\mathbf{A}\right)\psi\right|^2 + \frac{h^2}{8\pi}$$

Field-Free Uniform Case

Near T_c we must have $\beta > 0$

Jefferson Lab

 $\alpha(t) = \alpha'(t-1)$

At the minimum
$$f - f_{n0} = -\frac{H_c^2}{8\pi} = -\frac{\alpha^2}{2\beta} \Rightarrow |\psi|^2$$
 and $H_c \propto (1-t)$

Field-Free Uniform Case

$$f - f_{n0} = \alpha |\psi|^2 + \frac{\beta}{2} |\psi|^4 \qquad \qquad |\psi_{\infty}|^2 = -\frac{\alpha}{\beta}$$

$$\beta > 0 \qquad \alpha(t) = \alpha'(t-1) \quad \Rightarrow |\psi_{\infty}|^2 \quad \propto (1-t)$$

It is consistent with correlating $|\Psi(\mathbf{r})|^2$ with the density of superelectrons

$$n_s \propto \lambda^{-2} \propto (1-t)$$
 near T_c

At the minimum $f - f_{n0} = -\frac{\alpha^2}{2\beta} = -\frac{H_c^2}{8\pi}$ (definition of H_c) $\Rightarrow H_c \propto (1-t)$

which is consistent with $H_c = H_{c0}(1-t^2)$

Field-Free Uniform Case

Identify the order parameter with the density of superelectrons

$$n_{s} = \left|\Psi\right|^{2} \sim \frac{1}{\lambda_{L}^{2}(T)} \implies \frac{\lambda_{L}^{2}(0)}{\lambda_{L}^{2}(T)} = \frac{\left|\Psi(T)\right|^{2}}{\left|\Psi(0)\right|^{2}} = -\frac{1}{n} \frac{\alpha(T)}{\beta}$$

since
$$\frac{1}{2} \frac{\alpha^2(T)}{\beta} = \frac{H_c^2(T)}{8\pi}$$

$$n\alpha(T) = -\frac{H_c^2(T)}{4\pi} \frac{\lambda_L^2(T)}{\lambda_L^2(0)} \quad \text{and} \quad n^2\beta = \frac{H_c^2(T)}{4\pi} \frac{\lambda_L^4(T)}{\lambda_L^4(0)}$$

Field-Free Nonuniform Case

Equation of motion in the absence of electromagnetic field

$$-\frac{1}{2m^*}\nabla^2\psi + \alpha(T)\psi + \beta|\psi|^2\psi = 0$$

Look at solutions close to the constant one $\psi = \psi_{\infty} + \delta$ where $|\psi_{\infty}|^2 = -\frac{\alpha(T)}{\beta}$

$$\frac{1}{4m^* |\alpha(T)|} \nabla^2 \delta - \delta = 0$$

Which leads to
$$\delta \approx e^{-\sqrt{2}r/\xi(T)}$$

Field-Free Nonuniform Case

$$\delta \approx e^{-\sqrt{2}r/\xi(T)} \quad \text{where} \quad \xi(T) = \frac{1}{\sqrt{2m^* |\alpha(T)|}} = \sqrt{\frac{2\pi n}{m^* H_c^2(T)}} \frac{\lambda_L(0)}{\lambda_L(T)}$$

is the Ginzburg-Landau coherence length.

It is different from, but related to, the Pippard coherence length. $\xi(T) \simeq \frac{\zeta_0}{(1-t^2)^{1/2}}$

GL parameter:
$$\kappa(T) = \frac{\lambda_L(T)}{\xi(T)}$$

Both $\lambda_L(T)$ and $\xi(T)$ diverge as $T \to T_c$ but their ratio remains finite

 $\kappa(T)$ is almost constant over the whole temperature range

2 Fundamental Lengths

London penetration depth: length over which magnetic field decay

$$\lambda_{L}(T) = \left(\frac{m^{*}\beta}{2e^{2}\alpha'}\right)^{1/2} \sqrt{\frac{T_{c}}{T_{c}-T}}$$

Coherence length: scale of spatial variation of the order parameter (superconducting electron density)

$$\xi(T) = \left(\frac{\hbar^2}{4m^*\alpha'}\right)^{1/2} \sqrt{\frac{T_c}{T_c - T}}$$

The critical field is directly related to those 2 parameters

$$H_c(T) = \frac{\phi_0}{2\sqrt{2}\,\xi(T)\,\lambda_L(T)}$$

Surface Energy

$$\sigma \simeq \frac{1}{8\pi} \Big[H_c^2 \xi - H^2 \lambda \Big]$$

Jefferson Lab

 $\frac{H^2\lambda}{8\pi}$: Energy that can be gained by letting the fields penetrate $\frac{H_c^2\xi}{8\pi}$: Energy lost by "damaging" superconductor

Page 41

Surface Energy $\sigma \simeq \frac{1}{8\pi} \left[H_c^2 \xi - H^2 \lambda \right]$

Interface is stable if σ >0

Jefferson Lab

If $\xi >> \lambda$ $\sigma > 0$

Superconducting up to H_c where superconductivity is destroyed globally

If
$$\lambda >> \xi$$
 $\sigma < 0$ for $H^2 > H_c^2 \frac{\xi}{\lambda}$

Advantageous to create small areas of normal state with large area to volume ratio \rightarrow quantized fluxoids

More exact calculation (from Ginzburg-Landau):

$$\kappa = \frac{\lambda}{\xi} < \frac{1}{\sqrt{2}} \qquad : \text{Type I}$$
$$\kappa = \frac{\lambda}{\xi} > \frac{1}{\sqrt{2}} \qquad : \text{Type II}$$

Magnetization Curves

FIGURE 5-2

Jefferson Lab

Comparison of magnetization curves for three superconductors with the same value of thermodynamic critical field H_c , but different values of κ . For $\kappa < 1/\sqrt{2}$, the superconductor is of type I and exhibits a first-order transition at H_c . For $\kappa > 1/\sqrt{2}$, the superconductor is type II and shows second-order transitions at H_{c1} and H_{c2} (for clarity, marked only for the highest κ case). In all cases, the area under the curve is the condensation energy $H_c^2/8\pi$.

FIGURE 1-5

Comparison of flux penetration behavior of type I and type II superconductors with the same thermodynamic critical field H_c . $H_{c2} = \sqrt{2} \kappa H_c$. The ratio of B/H_{c2} from this plot also gives the approximate variation of R/R_n , where R is the electrical resistance for the case of negligible pinning, and R_n is the normal-state resistance.

Intermediate State

Vortex lines in Pb_{.98}In_{.02}

At the center of each vortex is a normal region of flux h/2e

Critical Fields

Even though it is more energetically favorable for a type I superconductor to revert to the normal state at H_c , the surface energy is still positive up to a superheating field $H_{sh}>H_c \rightarrow$ metastable superheating region in which the material may remain superconducting for short times.

Type I H_c Thermodynamic critical field $H_{sh} \simeq -\frac{H_c}{\sqrt{\kappa}}$ Superheating critical fieldField at which surface energy is

Type II H_c Thermodynamic critical field $H_{c2} = \sqrt{2} \kappa H_c$ $H_{c1} \simeq \frac{H_c^2}{H_{c2}}$ $\simeq \frac{1}{2\kappa} (\ln \kappa + .008) H_c$ (for $\kappa \gg 1$)

Figure 3-1 Phase diagram for a long cylinder of a Type II superconductor.

Superheating Field

2.5 Ginsburg-Landau: 2.0 H_{sh} $\frac{H_{c2}}{H_c} = \sqrt{2} \kappa$ $H_{sh} \sim \frac{0.9H_c}{\sqrt{\kappa}}$ for $\kappa <<1$ NORMAL STATE 1.5 MIXED STATE ~ 1.2 H_c for $\kappa \sim 1$ SUPERHEATED STATE H Hc ~ 0.75 H_c for $\kappa >> 1$ 1.0 MEISSNER STATE The exact nature of the rf critical 0,5 field of superconductors is still an open question 0.4 0.8 1.2 2.0 1.6 GL Parameter $\kappa [\equiv \frac{\lambda}{\xi}]$

> Fig. 13: Phase diagram of superconductors⁴² in the transition regime of type I and II. The normalized critical fields are shown as a function of x.

Material Parameters for Some Superconductors

Superconductor	$\lambda_L(0)$ (nm)	ξ_{0} (nm)	κ	$2\Delta(0)/kT_c$	$T_c(\mathbf{K})$
Al	16	1500	0.011	3.40	1.18
In	25	400	0.062	3.50	3.3
Sn	28	300	0.093	3.55	3.7
Pb	28	110	0.255	4.10	7.2
Nb	32	39	0.82	3.5-3.85	8.95-9.2
Та	35	93	0.38	3.55	4.46
Nb_3Sn	50	6	8.3	4.4	18
NbN	50	6	8.3	4.3	≤ 17
Yba ₂ Cu ₃ o _x	140	1.5	93	4.5	90

- What needed to be explained and what were the clues?
 - Energy gap (exponential dependence of specific heat)
 - Isotope effect (the lattice is involved)
 - Meissner effect

Jefferson Lab

Figure 26: The critical temperature of various tin isotopes.

Cooper Pairs

Assumption: Phonon-mediated attraction between electron of equal and opposite momenta located within $\hbar \omega_D$ of Fermi surface

Moving electron distorts lattice and leaves behind a trail of positive charge that attracts another electron moving in opposite direction

Fermi ground state is unstable

Electron pairs can form bound states of lower energy

Jefferson Lab

Bose condensation of overlapping Cooper pairs into a coherent Superconducting state

Cooper Pairs

One electron moving through the lattice attracts the positive ions.

Page 50

Figure 22: Cooper pairs and single electrons in the crystal lattice of a superconductor. (After Essmann and Träuble [12]).

Figure 23: Various Cooper pairs $(\vec{p}, -\vec{p}), (\vec{p}', -\vec{p}'), (\vec{p}'', -\vec{p}''), \dots$ in momentum space.

The size of the Cooper pairs is much larger than their spacing They form a coherent state

BCS and BEC

BCS

weak coupling

large pair size **k**-space pairing

strongly overlapping Cooper pairs

BEC

strong coupling

small pair size **r**-space pairing

ideal gas of preformed pairs

Page 52

BCS Theory

 $ig|0ig
angle_q,ig|1ig
angle_q \ a_q,b_q$

Jefferson Lab

:states where pairs $(\vec{q}, -\vec{q})$ are unoccupied, occupied : probabilites that pair $(\vec{q}, -\vec{q})$ is unoccupied, occupied

BCS ground state

$$\left|\Psi\right\rangle = \prod_{\vec{q}} \left(a_{q}\left|0\right\rangle_{q} + b_{q}\left|1\right\rangle_{q}\right)$$

Assume interaction between pairs \vec{q} and \vec{k} $V_{qk} = -V$ if $|\xi_q| \le \hbar \omega_D$ and $|\xi_k| \le \hbar \omega_D$ = 0 otherwise

Figure 4-1

Electron-electron interaction via phonons. In process (a) the electron \mathbf{k} emits a phonon of wave-vector $-\mathbf{q}$. The phonon is absorbed later by the second electron. In process (b) the second electron in state $(-\mathbf{k})$ emits a phonon \mathbf{q} , subsequently absorbed by the first electron.

Hamiltonian

$$\mathcal{H} = \sum_{k} \mathcal{E}_{k} n_{k} + \sum_{qk} V_{qk} c_{q}^{*} c_{-q}^{*} c_{k} c_{-k}$$

 c_k destroys an electron of momentum k

 c_q^* creates an electron of momentum k

 $n_k = c_k^* c_k$ number of electrons of momentum k

• Ground state wave function $|\Psi\rangle = \prod_{\vec{q}} (a_q + b_q c_q^* c_{-q}^*) |\phi_0\rangle$

- The BCS model is an extremely simplified model of reality
 - The Coulomb interaction between single electrons is ignored
 - Only the term representing the scattering of pairs is retained
 - The interaction term is assumed to be constant over a thin layer at the Fermi surface and 0 everywhere else
 - The Fermi surface is assumed to be spherical
- Nevertheless, the BCS results (which include only a very few adjustable parameters) are amazingly close to the real world

Is there a state of lower energy than the normal state?

$$a_q = 0, \ b_q = 1$$
 for $\xi_q < 0$
 $a_q = 1, \ b_q = 0$ for $\xi_q > 0$

yes:
$$2b_q^2 = 1 - \frac{\xi_q}{\sqrt{\xi_q^2 + \Delta_0^2}}$$

Plot of BCS occupation fraction v_k^2 vs. electron energy measured from the chemical potential (Fermi energy). To make the cutoffs at $\pm \hbar \omega_c$ visible, the plot has been made for a strong-coupling superconductor with N(0)V = 0.43. For comparison, the Fermi function for the normal state at T_c is also shown on the same scale, using the BCS relation $\Delta(0) = 1.76kT_c$.

where

$$\Delta_0 = \frac{\hbar \omega_D}{\sinh\left[\frac{1}{\rho(0)V}\right]} \simeq 2\hbar \omega_D \ e^{-\frac{1}{\rho(0)V}}$$

Critical temperature

$$kT_c = 1.14 \hbar \omega_D \exp\left[-\frac{1}{VN(E_F)}\right]$$
$$\Delta(0) = 1.76 kT_c$$

element	Sn	In	T1	Ta	Nb	Hg	Pb
$\Delta(0)/k_BT_c$	1.75	1.8	1.8	1.75	1.75	2.3	2.15

Coherence length (the size of the Cooper pairs)

$$\xi_0 = .18 \frac{\hbar v_F}{kT_c}$$

BCS Condensation Energy

Condensation energy:
$$E_s - E_n = -\frac{\rho(0)V\Delta_0^2}{2}$$

 $\simeq -N\Delta_0 \left(\frac{\Delta_0}{\varepsilon_F}\right) = \frac{H_0^2}{8\pi}$
 $\Delta_0 / k \simeq 10K$
 $\varepsilon_F / k \simeq 10^4 K$

BCS Energy Gap

At finite temperature:

Implicit equation for the temperature dependence of the gap:

$$\frac{1}{V\rho(0)} = \int_0^{\hbar\omega_D} \frac{\tanh\left[\left(\varepsilon^2 + \Delta^2\right)^{1/2} / 2kT\right]}{\left(\varepsilon^2 + \Delta^2\right)^{1/2}} d\varepsilon$$

Variation of the order parameter Δ with temperature in the BCS approximation.

BCS Excited States

Energy of excited states:

$$\mathcal{E}_{\mathbf{k}} = 2\sqrt{\xi_k^2 + \Delta_0^2}$$

FIGURE 2-4

Density of states in superconducting compared to normal state. All **k** states whose energies fall in the gap in the normal metal are raised in energy above the gap in the superconducting state.

BCS Specific Heat

Specific heat $C_{es} \simeq \exp\left(-\frac{\Delta}{kT}\right)$ for $T < \frac{T_c}{10}$ 3.0 1.0 $\frac{C_{es}}{\gamma T_{c}} = 9.17 \exp(-1.5 T_{c}/T)$ 0.3 $\frac{C_{es}}{\gamma T_{c}}$ 0.1 0.03 vanadium o tin 0.01 1.0 2.0 3.0 4.0 5.0 T_c/T

Fig. 22. Reduced electronic specific heat in superconducting vanadium and tin. [From Biondi et al., (150).]

Electrodynamics and Surface Impedance in BCS Model

$$H_0\phi + H_{ex} \phi = i\hbar \frac{\partial \phi}{\partial t}$$

$$H_{ex} = \frac{e}{mc} \sum A(r_i, t) p_i$$

 H_{ex} is treated as a small perturbation

$$H_{rf} \ll H_c$$

Jefferson Lab

There is, at present, no model for superconducting surface resistance at high rf field

$$J \propto \int \frac{R[R \cdot A] I(\omega, R, T) e^{-\frac{R}{l}}}{R^4} dr$$
$$J(k) = -\frac{c}{4\pi} K(k) A(k)$$
$$K(0) \neq 0:$$
 Meissner effect

similar to Pippard's model

Page 62

Penetration Depth

$$\lambda = \frac{2}{\pi} \int \frac{dk}{K(k) + k^2} dk$$
 (specular)

Fig. 30. Temperature dependence of $d\lambda/dy$ for tin obtained by Schawlow and Devlin (207) compared with the theoretical curve obtained from the BCS theory.

Temperature dependence

-close to T_c : dominated by change in $\lambda(t) = \frac{t^4}{(1-t^2)^{\frac{3}{2}}}$

-for $T < \frac{T_c}{2}$: dominated by density of excited states $\sim e^{-\Delta/kT}$ $R_s \sim \frac{A}{T}\omega^2 \exp\left(-\frac{\Delta}{kT}\right)$

Frequency dependence

 ω^2 is a good approximation

Fig. 1. Measured values of the surface resistance ratio r of superconducting aluminum as a function of the reduced temperature t at several representative wavelengths. The wavelengths and corresponding photon energies are indicated on the curves [After Biondi and Garfunkel (15).]

Page 65

1.1.1.2

Figure 4.5: Theoretical surface resistance at 1.5 GHz of lead, niobium and Nb_3Sn as calculated from program [94]. The values given in Table 4.1 were used for the material parameters.

Fig. 2. Temperature dependence of surface resistance of niobium at 3.7 GHz measured in the TE_{011} mode at $H_{rf} \simeq 10$ G. The values computed with the BCS theory used the following material parameters:

$$\begin{split} T_c &= 9.25 \text{ K}; \qquad \lambda_L(T=0, \ l=\infty) = 320 \text{ Å}; \\ \Delta(0)/k \ T &= 1.85; \quad \xi_F(T=0, \ l=\infty) = 620 \text{ Å}; \quad l= 1\,000 \text{ Å or } 80 \text{ Å}. \end{split}$$

Jefferson Lab

Fig. 5. The surface resistance of Nb at 4.2 K as a function of frequency [62,63]. Whereas the isotropic BCS surface resistance $(-\cdot - \cdot)$ resulted in $R \propto \omega^{1.8}$ around 1 GHz, the measurements fit better to ω^2 (--). The solid curve, which fits the data over the entire range, is a calculation based on the smearing of the BCS density-of-states singularity by the energy gap anisotropy in the presence of impurity scattering [61]. The authors thank G. Müller for providing this figure.

Page 67

Surface Impedance - Definitions

 The electromagnetic response of a metal, whether normal or superconducting, is described by a complex surface impedance, Z=R+iX

- *R* : Surface resistance
- X: Surface reactance

Both R and X are real

Definitions

For a semi- infinite slab:

F(0)

$$Z = \frac{E_x(0)}{\int_0^\infty J_x(z) dz}$$
 Definition
$$= \frac{E_x(0)}{H_y(0)} = i \omega \mu_0 \frac{E_x(0)}{\partial E_x(z) / \partial z|_{z=0_+}}$$
 From Maxwell

Definitions

The surface resistance is also related to the power flow into the conductor

$$Z = Z_0 \ \vec{S}(0_+) / \vec{S}(0_-)$$

$$Z_0 = \left(\frac{\mu_0}{\varepsilon_0}\right)^{1/2} \simeq 377 \Omega$$
 Impedance of vacuum
 $\vec{S} = \vec{E} \times \vec{H}$ Poynting vector

and to the power dissipated inside the conductor

$$P = \frac{1}{2} R H^2(0_-)$$

Maxwell equations are not sufficient to model the behavior of electromagnetic fields in materials. Need an additional equation to describe material properties

$$\frac{\partial J}{\partial t} + \frac{J}{\tau} = \frac{\sigma}{\tau} E \qquad \qquad \Rightarrow \sigma(\omega) = \frac{\sigma_0}{1 - i\omega\tau}$$

For Cu at 300 K, $\tau = 3 \times 10^{-14}$ sec so for wavelengths longer than infrared $J = \sigma E$

Normal Conductors (local limit)

In the local limit $\vec{J}(z) = \sigma \vec{E}(z)$

The fields decay with a characteristic length (skin depth)

$$\delta = \left(\frac{2}{\mu_0 \omega \sigma}\right)^{1/2}$$

$$E_x(z) = E_x(0) e^{-z/\delta} e^{-iz/\delta}$$

$$H_y(z) = \frac{(1-i)}{\mu_0 \omega \delta} E_x(z)$$

$$Z = \frac{E_x(0)}{H_y(0)} = \frac{(1+i)}{2} \mu_0 \omega \delta = \frac{(1+i)}{\sigma \delta} = (1+i) \left(\frac{\mu_0 \omega}{2\sigma}\right)^{1/2}$$

Page 72

- At low temperature, experiments show that the surface resistance becomes independent of the conductivity
- As the temperature decreases, the conductivity σ increases – The skin depth decreases $\delta = \left(\frac{2}{\mu m \sigma}\right)^{1/2}$
 - The skin depth (the distance over which fields vary) can become less then the mean free path of the electrons (the distance they travel before being scattered)
 - The electrons do not experience a constant electric field over a mean free path
 - The local relationship between field and current is not valid $\vec{J}(z) \neq \sigma \vec{E}(z)$

Introduce a new relationship where the current is related to the electric field over a volume of the size of the mean free path (*I*)

$$\vec{J}(\vec{r},t) = \frac{3\sigma}{4\pi l} \int_{V} d\vec{r}' \frac{\vec{R} \left[\vec{R} \cdot \vec{E}(\vec{r}',t-\vec{R}/v_F) \right]}{R^4} e^{-R/l} \quad \text{with} \quad \vec{R} = \vec{r}' - \vec{r}$$

Specular reflection: Boundaries act as perfect mirrors Diffuse reflection: Electrons forget everything

Fig. 2 Anomalous skin effect in a 500 MHz Cu cavity

- p : fraction of electrons specularly scattered at surface
- 1-p: fraction of electrons diffusively scattered

$$R(l \to \infty) = 3.79 \times 10^{-5} \omega^{2/3} \left(\frac{l}{\sigma}\right)^{1/3}$$

For Cu: $l / \sigma = 6.8 \times 10^{-16} \ \Omega \cdot m^2$

Does not compensate for the Carnot efficiency

Superconductors are free of power dissipation in static fields.

In microwave fields, the time-dependent magnetic field in the penetration depth will generate an electric field.

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

The electric field will induce oscillations in the normal electrons, which will lead to power dissipation

In a superconductor, a time-dependent current will be carried by the Copper pairs (superfluid component) and by the unpaired electrons (normal component)

$$J = J_{n} + J_{s}$$
$$J_{n} = \sigma_{n} E_{0} e^{-i\omega t}$$
$$J_{s} = i \frac{2n_{c} e^{2}}{m_{e} \omega} E_{0} e^{-i\omega t}$$

Jefferson Lab

(Ohm's law for normal electrons)

$$(m_e \dot{v}_c = -eE_0 e^{-i\omega t})$$

$$J = \sigma E_0 e^{-i\omega t}$$

$$\sigma = \sigma_n + i\sigma_s \qquad \text{with} \qquad \sigma_s = \frac{2n_c e^2}{m_e \omega} = \frac{1}{\mu_0 \lambda_L^2 \omega}$$

Page 78

For normal conductors
$$R_s = \frac{1}{\sigma\delta}$$

For superconductors

$$R_{s} = \Re\left[\frac{1}{\lambda_{L}\left(\sigma_{n}+i\sigma_{s}\right)}\right] = \frac{1}{\lambda_{L}}\frac{\sigma_{n}}{\sigma_{n}^{2}+\sigma_{s}^{2}} \approx \frac{1}{\lambda_{L}}\frac{\sigma_{n}}{\sigma_{s}^{2}}$$

The superconducting state surface resistance is proportional to the normal state conductivity

$$R_{s} \approx \frac{1}{\lambda_{L}} \frac{\sigma_{n}}{\sigma_{s}^{2}}$$

$$\sigma_{n} = \frac{n_{n}e^{2}l}{m_{e}v_{F}} \propto l \exp\left[-\frac{\Delta(T)}{kT}\right] \qquad \sigma_{s} = \frac{1}{\mu_{0}\lambda_{L}^{2}\omega}$$

$$R_{s} \propto \lambda_{L}^{3} \omega^{2} l \exp\left[-\frac{\Delta(T)}{kT}\right]$$

This assumes that the mean free path is much larger than the coherence length

For niobium we need to replace the London penetration depth with

$$\Lambda = \lambda_L \sqrt{1 + \xi / l}$$

As a result, the surface resistance shows a minimum when

$$\xi \approx l$$

Surface Resistance of Niobium

Electrodynamics and Surface Impedance in BCS Model

$$H_{0}\phi + H_{ex} \phi = i\hbar \frac{\partial \phi}{\partial t}$$
$$H_{ex} = \frac{e}{mc} \sum A(r_{i}, t) p_{i}$$

 H_{ex} is treated as a small perturbation

 $H_{rf} << H_c$

There is, at present, no model for superconducting surface resistance at high rf field

$$J \propto \int \frac{R[R \cdot A] I(\omega, R, T) e^{-\frac{R}{l}}}{R^4} dr$$
$$J(k) = -\frac{c}{4\pi} K(k) A(k)$$
$$K(0) \neq 0: \text{ Meissner effect}$$

Jefferson Lab

similar to Pippard's model

Temperature dependence

-close to T_c :

dominated by change in $\lambda(t) = \frac{t}{(1-t^2)^{3/2}}$ 10-3 Niobium Lead --10-4 Nb₃Sn ... -for $T < \frac{T_c}{2}$: 10-5 Rs (Ohms) 10-6 dominated by density of excited states $\sim e^{-\Delta'_{kT}}$ 10-7 $R_{s} \sim \frac{A}{T} \omega^{2} \exp\left(-\frac{\Delta}{\mathbf{kT}}\right)$ 10-8 10-9 2.0 4.0 3.0 T_c/T

Frequency dependence

Jefferson Lab

 ω^2 is a good approximation

Figure 4.5: Theoretical surface resistance at 1.5 GHz of lead, niobium and Nb_3Sn as calculated from program [94]. The values given in Table 4.1 were used for the material parameters.

5.0

- The surface resistance of superconductors depends on the frequency, the temperature, and a few material parameters
 - Transition temperature
 - Energy gap
 - Coherence length
 - Penetration depth
 - Mean free path
- A good approximation for T<T_c/2 and ω << Δ /h is

$$R_s \sim \frac{A}{T}\omega^2 \exp\left(-\frac{\Delta}{kT}\right) + R_{res}$$

$$R_s \sim \frac{A}{T}\omega^2 \exp\left(-\frac{\Delta}{kT}\right) + R_{res}$$

- In the dirty limit $l \ll \xi_0$ $R_{BCS} \propto l^{-1/2}$
- In the clean limit $l \gg \xi_0 \qquad R_{BCS} \propto l$

R_{res}:

Residual surface resistance No clear temperature dependence No clear frequency dependence Depends on trapped flux, impurities, grain boundaries, ...

Fig. 2. Temperature dependence of surface resistance of niobium at 3.7 GHz measured in the TE_{011} mode at $H_{rf} \simeq 10$ G. The values computed with the BCS theory used the following material parameters:

$$\begin{split} T_c &= 9.25 \text{ K}; \qquad \lambda_L(T=0, \ l=\infty) = 320 \text{ Å}; \\ \Delta(0)/k \ T &= 1.85; \quad \xi_F(T=0, \ l=\infty) = 620 \text{ Å}; \quad l= 1\,000 \text{ Å or } 80 \text{ Å}. \end{split}$$

Jefferson Lab

Fig. 5. The surface resistance of Nb at 4.2 K as a function of frequency [62,63]. Whereas the isotropic BCS surface resistance $(-\cdot - \cdot)$ resulted in $R \propto \omega^{1.8}$ around 1 GHz, the measurements fit better to $\omega^2 (--)$. The solid curve, which fits the data over the entire range, is a calculation based on the smearing of the BCS density-of-states singularity by the energy gap anisotropy in the presence of impurity scattering [61]. The authors thank G. Müller for providing this figure.

Page 87

Surface Resistance of Niobium

Page 88

Surface Resistance of Niobium

Super and Normal Conductors

- Normal Conductors
 - Skin depth proportional to $\omega^{-1/2}$
 - Surface resistance proportional to $\omega^{1/2\,\rightarrow\,2/3}$
 - Surface resistance independent of temperature (at low T)
 - For Cu at 300K and 1 GHz, $R_s \text{=} 8.3 \text{ m}\Omega$
- Superconductors
 - Penetration depth independent of $\boldsymbol{\omega}$
 - Surface resistance proportional to ω^2
 - Surface resistance strongly dependent of temperature
 - − For Nb at 2 K and 1 GHz, $R_s \approx 7 n\Omega$

However: do not forget Carnot

RF Cavity

• Mode transformer (TEM \rightarrow TM)

- Impedance transformer (Low $Z \rightarrow High Z$)
- Space enclosed by conducting walls that can sustain an infinite number of resonant electromagnetic modes
- Shape is selected so that a particular mode can efficiently transfer its energy to a charged particle
- An isolated mode can be modeled by an LRC circuit

RF Cavity

Lorentz force

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

An accelerating cavity needs to provide an electric field E longitudinal with the velocity of the particle

Magnetic fields provide deflection but no acceleration

DC electric fields can provide energies of only a few MeV

Higher energies can be obtained only by transfer of energy from traveling waves \rightarrow resonant circuits

Transfer of energy from a wave to a particle is efficient only is both propagate at the same velocity

Equivalent Circuit for an rf Cavity

Simple LC circuit representing an accelerating resonator

Simple lumped L-C circuit repesenting an accelerating resonator. $\omega_0^2 = 1/LC$

Metamorphosis of the LC circuit into an accelerating cavity

Chain of weakly coupled pillbox cavities representing an accelerating module

Chain of coupled pendula as its mechanical analog

Jefferson Lab

Metamorphosis of the L-C circuit of Fig. 1 into an accelerating cavity (after R.P.Feynman³³). Fig. 5d shows the cylindrical "pillbox cavity" and Fig. 5e a slightly modified pillbox cavity with beam holes (typical β between 0.5 and 1.0). Fig. 5c resembles a low β version of the pillbox variety (0.2< β <0.5).

rating module

Chain of weakly-coupled pillbox cavities representing an accele-

Chain of coupled pendula as a mechanical analogue to Fig. 6a

Electromagnetic Modes

Electromagnetic modes satisfy Maxwell equations

$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) \left\{ \begin{matrix} \vec{E} \\ \vec{H} \end{matrix} \right\} = 0$$

With the boundary conditions (assuming the walls are made of a material of low surface resistance)

no tangential electric field
$$\vec{n} \times \vec{E} = 0$$

no normal magnetic field $\vec{n} \cdot \vec{H} = 0$

Electromagnetic Modes

Assume everything

$$\sim e^{-i\omega t}$$

$$\left(\nabla^2 + \frac{\omega^2}{c^2}\right) \left\{ \frac{\vec{E}}{\vec{H}} \right\} = 0$$

For a given cavity geometry, Maxwell equations have an infinite number of solutions with a sinusoidal time dependence

For efficient acceleration, choose a cavity geometry and a mode where:

Electric field is along particle trajectory

Magnetic field is 0 along particle trajectory

Velocity of the electromagnetic field is matched to particle velocity

Voltage gained by a particle divided by a reference length

$$E = \frac{1}{L} \int E_z(z) \cos(\omega z / \beta c) dz$$

For velocity-of-light particles

$$L = \frac{N\lambda}{2}$$

For less-than-velocity-of-light cavities, there is no universally adopted definition of the reference length

Design Considerations

Energy Content

Energy density in electromagnetic field:

$$u = \frac{1}{2} \left(\varepsilon_0 \mathbf{E}^2 + \mu_0 \mathbf{H}^2 \right)$$

Because of the sinusoidal time dependence and the 90° phase shift, he energy oscillates back and forth between the electric and magnetic field

Total energy content in the cavity:

$$U = \frac{\varepsilon_0}{2} \int_V dV \left| \mathbf{E} \right|^2 = \frac{\mu_0}{2} \int_V dV \left| \mathbf{H} \right|^2$$

Power Dissipation

Power dissipation per unit area

$$\frac{dP}{da} = \frac{\mu_0 \omega \delta}{4} \left| \mathbf{H}_{\parallel} \right|^2 = \frac{R_s}{2} \left| \mathbf{H}_{\parallel} \right|^2$$

Total power dissipation in the cavity walls

$$P = \frac{R_s}{2} \int_A da \left| \mathbf{H}_{\parallel} \right|^2$$

Quality Factor

Quality Factor Q_0 :

 $Q_0 \equiv \frac{\text{Energy stored in cavity}}{\text{Energy dissipated in cavity walls per radian}} = \frac{\omega_0 U}{P_{diss}}$ $= \omega_0 \tau_0 = \frac{\omega_0}{\Delta \omega_0}$

$$Q_0 = \frac{\omega \mu_0}{R_s} \frac{\int_V dV \left|\mathbf{H}\right|^2}{\int_A da \left|\mathbf{H}_{\parallel}\right|^2}$$

Geometrical Factor

Geometrical Factor QRs (Ω) Product of the Quality Factor and the surface resistance Independent of size and material Depends only on shape of cavity and electromagnetic mode

$$G = QR_{s} = \omega\mu_{0} \frac{\int_{V} dV \left|\mathbf{H}\right|^{2}}{\int_{A} da \left|\mathbf{H}_{\parallel}\right|^{2}} = 2\pi \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \frac{1}{\lambda} \frac{\int_{V} dV \left|\mathbf{H}\right|^{2}}{\int_{A} da \left|\mathbf{H}_{\parallel}\right|^{2}} = \frac{2\pi\eta}{\lambda} \frac{\int_{V} dV \left|\mathbf{H}\right|^{2}}{\int_{A} da \left|\mathbf{H}_{\parallel}\right|^{2}}$$

 $\eta \approx 377 \Omega$ Impedance of vacuum

Shunt Impedance, R/Q

Shunt impedance
$$R_{sh}$$
:
 $R_{sh} \equiv \frac{V_c^2}{P_{diss}}$ in
 V_c = accelerating voltage

Note: Sometimes the shunt impedance is defined as or quoted as impedance per unit length (ohm/m)

$$\frac{V_c^2}{2P_{diss}}$$

Ω

R/Q (in Ω)
$$\frac{R}{Q} = \frac{V^2}{P} \frac{P}{\omega U} = \frac{E^2}{U} \frac{L^2}{\omega}$$

Q – Geometrical Factor (**Q** R_s)

Q: Energy content Energy disspated during one radian = $\omega \frac{U}{P} = \omega \tau = \frac{\omega}{\Delta \omega}$

Rough estimate (factor of 2) for fundamental mode

$$\omega = \frac{2\pi c}{\lambda} \approx \frac{2\pi}{\sqrt{\varepsilon_0 \mu_0}} \frac{1}{2L} \qquad U = \frac{\mu_0}{2} \int H^2 dv \approx \frac{\mu_0}{2} \frac{1}{2} H_0^2 \frac{\pi L^3}{6}$$
$$P = \frac{1}{2} R_s \int H^2 dA = \frac{1}{2} R_s \frac{1}{2} H_0^2 \pi L^2$$
$$QR_s \sim \frac{\pi}{6} \sqrt{\frac{\mu_0}{\varepsilon_0}} = 200\Omega$$

 $G = QR_s$ is size (frequency) and material independent. It depends only on the mode geometry It is independent of number of cells For superconducting elliptical cavities $QR_s \sim 275\Omega$

Shunt Impedance (R_{sh}), R_{sh} R_s, R/Q

$$R_{sh} = \frac{V^2}{P} \simeq \frac{E_z^2 L^2}{\frac{1}{2} R_s H_0^2 \pi L^2 \frac{1}{2}}$$

In practice for elliptical cavities

$$R_{sh}R_s \simeq 33,000 \ (\Omega^2)$$
 per cell
 $R_{sh} / Q \simeq 100\Omega$ per cell

$$R_{sh} R_s$$
 and R_{sh} / Q
Independent of size (frequency) and material
Depends on mode geometry
Proportional to number of cells

Power Dissipated per Unit Length or Unit Area

$$\frac{P}{L} \propto \frac{1}{\frac{R}{Q}} \frac{E^2 R_s}{\omega}$$

For normal conductors $R_s \propto \omega^{\frac{1}{2}}$

$$\frac{P}{L} \propto \omega^{-\frac{1}{2}}$$
$$\frac{P}{A} \propto \omega^{\frac{1}{2}}$$

For superconductors

$$R_s \propto \omega^2$$

$$\frac{P}{L} \propto \omega$$
$$\frac{P}{A} \propto \omega^2$$

1177

OLD **D**MINION

External Coupling

- Consider a cavity connected to an rf source
- A coaxial cable carries power from an rf source to the cavity
- The strength of the input coupler is adjusted by changing the penetration of the center conductor
- There is a fixed output coupler, the transmitted power probe, which picks up power transmitted through the cavity. This is usually very weakly coupled

Cavity with External Coupling

Consider the rf cavity after the rf is turned off. $\frac{dU}{dt}$ Stored energy *U* satisfies the equation:

$$\frac{dU}{dt} = -P_{tot}$$

Total power being lost, P_{tot} , is: $P_{tot} = P_{diss} + P_e + P_t$

 P_e is the power leaking back out the input coupler. P_t is the power coming out the transmitted power coupler. Typically P_t is very small $\Rightarrow P_{tot} \approx P_{diss} + P_e$

Recall $Q_0 \equiv \frac{\omega_0 U}{P_{diss}}$

Jefferson Lab

Similarly define a "loaded" quality factor Q_L : $Q_L \equiv \frac{\omega_0 U}{P}$

Now
$$\frac{dU}{dt} = -\frac{\omega_0 U}{Q_L} \implies U = U_0 e^{-\frac{\omega_0 t}{Q_L}}$$

 \therefore energy in the cavity decays exponentially with time constant: $\tau_L = \frac{Q_L}{\omega_0}$

Cavity with External Coupling

Equation
$$\frac{P_{tot}}{\omega_0 U} = \frac{P_{diss} + P_e}{\omega_0 U}$$

suggests that we can assign a quality factor to each loss mechanism, such that 1 1 1

$$\frac{1}{Q_L} = \frac{1}{Q_0} + \frac{1}{Q_e}$$

where, by definition,

Jefferson Lab

$$Q_e \equiv \frac{\omega_0 U}{P_e}$$

Typical values for CEBAF 7-cell cavities: $Q_0 = 1 \times 10^{10}$, $Q_e \approx Q_L = 2 \times 10^{7}$.

Cavity with External Coupling

• Define "coupling parameter": $\beta \equiv \frac{Q_0}{Q_e}$

therefore
$$\frac{1}{Q_L} = \frac{(1+\beta)}{Q_0}$$

$$\beta$$
 is equal to:

Jefferson Lab

$$\beta = \frac{P_e}{P_{diss}}$$

It tells us how strongly the couplers interact with the cavity. Large β implies that the power leaking out of the coupler is large compared to the power dissipated in the cavity walls.

Several Loss Mechanisms

 $P = \sum P_i$ -wall losses -power absorbed by beam -coupling to outside world

Associate Q will each loss mechanism

$$Q_{i} = \omega \frac{U}{P_{i}}$$
 (index 0 is reserved for wall losses)
Loaded Q: Q_{L}
$$\frac{1}{Q_{L}} = \frac{\sum P_{i}}{\omega U} = \sum \frac{1}{Q_{i}}$$

Coupling coefficient:

$$\beta_i = \frac{Q_0}{Q_i} = \frac{P_i}{P_0}$$

$$Q_L = \frac{Q_0}{1 + \sum \beta_i}$$

Equivalent Circuit for an rf Cavity

2 *

Simple LC circuit representing an accelerating resonator

Metamorphosis of the LC circuit into an accelerating cavity

Chain of weakly coupled pillbox cavities representing an accelerating cavity

Chain of coupled pendula as its mechanical analogue

Metamorphosis of the L-C circuit of Fig. 1 into an accelerating cavity (after R.P.Feynman³³⁾). Fig. 5d shows the cylindrical "pillbox cavity" and Fig. 5e a slightly modified pillbox cavity with beam holes (typical β between 0.5 and 1.0). Fig. Sc resembles a low β version of the pillbox variety (0.2<8<0.5).

Chain of weakly-coupled pillbox cavities representing an accelerating module

Chain of coupled pendula as a mechanical analogue to Fig. 6a

Parallel Circuit Model of an Electromagnetic Mode

- Power dissipated in resistor R:
- Shunt impedance:

Jefferson Lab

• Quality factor of resonator: $R_{sh} \equiv \frac{V_c}{P_{diss}}$

$$Q_{0} = \frac{\omega_{0}U}{P_{diss}} = \omega_{0}CR = \frac{R}{L\omega_{c}} = R\left(\frac{C}{L}\right)^{1/2}$$
$$\tilde{Z} = R\left[1 + iQ_{0}\left(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega}\right)\right]^{-1}$$
$$\omega \approx \omega_{0} , \qquad \tilde{Z} \approx R\left[1 + 2iQ_{0}\left(\frac{\omega - \omega_{0}}{\omega_{0}}\right)\right]^{-1}$$

Page 112

SJSA

Energy content
$$U = \frac{1}{2} CV^2 = \frac{1}{2} \frac{Q_0}{\omega R} V^2$$

 $= \frac{1}{2} \frac{Q_0}{\omega R} k^2 V_g^2 \frac{R^2}{(R + k^2 Z_0)^2 + 4k^4 Z_0^2 Q_0^2 (\frac{\Delta \omega}{\omega_0})^2}$
Incident power: $P_{inc} = \frac{V_g^2}{8Z_0}$
Define coupling coefficient: $\beta = \frac{R}{k_0^2 Z_0}$
 $\frac{U}{P_{inc}} = \frac{Q_0}{\omega_0} \frac{4\beta}{(1+\beta)^2} \frac{1}{1+(\frac{2Q_0}{1+\beta})^2 (\frac{\Delta \omega}{\omega_0})^2}$

Page 114

SA

Power dissipated
$$P_{diss} = \frac{\omega U}{Q_0} = P_{inc} \frac{4\beta}{(1+\beta)^2} \frac{1}{1 + \left(\frac{2Q_0}{1+\beta}\right)^2 \left(\frac{\Delta \omega}{\omega_0}\right)^2}$$
Optimal coupling:
$$\frac{U}{P_{inc}} \qquad \text{maximum} \quad \text{or} \quad P_{diss} = P_{inc}$$

$$\Rightarrow \Delta \omega = 0, \qquad \beta = 1 \qquad : \text{critical coupling}$$

Reflected power

Jefferson Lab

SJSA

$$P_{ref} = P_{inc} - P_{diss} = P_{mc} \left[1 - \frac{4\beta}{\left(1 + \beta\right)^2} \frac{1}{1 + \left(\frac{2Q_0}{1 + \beta} \frac{\Delta\omega}{\omega_0}\right)^2} \right]$$

At resonance

Equivalent Circuit for a Cavity with Beam

Beam in the rf cavity is represented by a current generator.

$$\tan \psi = -2\frac{Q_0}{1+\beta}\frac{\Delta\omega}{\omega_0}$$

Equivalent Circuit for a Cavity with Beam

$$V_{g} = (P_{g}R_{sh})^{1/2} \frac{2\beta^{1/2}}{1+\beta} \cos \psi$$
$$V_{b} = \frac{i_{b}R_{sh}}{2(1+\beta)} \cos \psi$$
$$i_{b} = 2i_{0} \frac{\sin \frac{\theta_{b}}{2}}{\frac{\theta_{b}}{2}}$$
$$i_{b} : \text{beam rf current}$$
$$i_{0} : \text{beam dc current}$$
$$\theta_{b} : \text{beam bunch length}$$

JSA

Equivalent Circuit for a Cavity with Beam

$$P_{g} = \frac{V_{c}^{2}}{R_{sh}} \frac{1}{4\beta} \left\{ \left(1 + \beta + b\right)^{2} + \left[(1 + \beta) \tan \psi - b \tan \phi\right]^{2} \right\}$$

$$b = \frac{\text{Power absorbed by the beam}}{\text{Power dissipated in the cavity}} = \frac{R_{sh}i_0\cos\phi}{V_c}$$

$$(1 + \beta_{opt}) \tan \psi_{opt} = b \tan \phi$$

$$\beta_{opt} = |1 + b|$$

$$P_g^{opt} = \frac{V_c^2}{R_{sh}} \frac{|1 + b| + (1 + b)}{2}$$

JSA

Frequency Control

Energy gain

$$W = qV\cos\phi$$

Energy gain error

$$\frac{\delta W}{W} = \frac{\delta V}{V} - \delta \phi \tan \phi$$

The fluctuations in cavity field amplitude and phase come mostly from the fluctuations in cavity frequency

Need for fast frequency control

Minimization of rf power requires matching of average cavity frequency to reference frequency

Need for slow frequency tuners

Some Definitions

- Ponderomotive effects: changes in frequency caused by the electromagnetic field (radiation pressure)
 - Static Lorentz detuning (cw operation)
 - Dynamic Lorentz detuning (pulsed operation)
- Microphonics: changes in frequency caused by connections to the external world
 - Vibrations
 - Pressure fluctuations
- Note: The two are not completely independent. When phase and amplitude feedbacks are active, ponderomotive effects can change the response to external disturbances

Cavity with Beam and Microphonics

• The detuning is now $\tan \psi = -2Q_L \frac{\delta \omega_0 \pm \delta \omega_m}{\omega_0} \qquad \qquad \tan \psi_0 = -2Q_L \frac{\delta \omega_0}{\omega_0}$

where $\delta \omega_0$ is the static detuning (controllable)

and $\delta \omega_m$ is the random dynamic detuning (uncontrollable)

Page 122

Q_{ext} Optimization with Microphonics

Condition for optimum coupling:

and

$$\beta_{opt} = \sqrt{\left(b+1\right)^2 + \left(2Q_0\frac{\delta\omega_m}{\omega_0}\right)^2}$$
$$P_g^{opt} = \frac{V_c^2}{2R_{sh}} \left[\left(b+1\right) + \sqrt{\left(b+1\right)^2 + \left(2Q_0\frac{\delta\omega_m}{\omega_0}\right)^2}\right]$$

In the absence of beam (b=0):

and

Jefferson Lab

$$\beta_{opt} = \sqrt{1 + \left(2Q_0 \frac{\delta \omega_m}{\omega_0}\right)^2}$$
$$P_g^{opt} = \frac{V_c^2}{2R_{sh}} \left[1 + \sqrt{1 + \left(2Q_0 \frac{\delta \omega_m}{\omega_0}\right)^2}\right]$$

 $\simeq U \, \delta \omega_{_m}$ If $\delta \omega_{_m}$ is very large

. .

Example

Example

Lorentz Detuning

Pressure deforms the cavity wall:

RF power produces radiation pressure:

 $P = \frac{\mu_0 H^2 - \varepsilon_0 E^2}{4}$ Outward pressure at the equator
Inward pressure at the iris
Deformation produces a frequency shift:

$$\Delta f = -k_L E_{acc}^2$$

Lorentz Detuning

SJSA

Microphonics

Total detuning

Jefferson Lab

$$\delta\omega_0 + \delta\omega_m$$

where $\delta \omega_0$ is the static detuning (controllable)

and $\delta \omega_m$ is the random dynamic detuning (uncontrollable)

 Adiabatic theorem applied to harmonic oscillators (Boltzmann-Ehrenfest)

If
$$\varepsilon = \frac{1}{\omega^2} \frac{d\omega}{dt} \ll 1$$
, then $\frac{U}{\omega}$ is an adiabatic invariant to all orders
$$\Delta \left(\frac{U}{\omega}\right) / \left(\frac{U}{\omega}\right) \sim o(e^{-d/\varepsilon}) \implies \boxed{\frac{\Delta \omega}{\omega} = \frac{\Delta U}{U}} \qquad \text{(Slater)}$$

Quantum mechanical picture: the number of photons is constant: $U = N\hbar\omega$

$$U = \int_{V} dV \left[\frac{\mu_{0}}{4} H^{2}(\vec{r}) + \frac{\varepsilon_{0}}{4} E^{2}(\vec{r}) \right] \text{ (energy content)}$$

$$\Delta U = -\int_{S} dS \,\vec{n}(\vec{r}) \cdot \vec{\xi}(\vec{r}) \left[\frac{\mu_{0}}{4} H^{2}(\vec{r}) - \frac{\varepsilon_{0}}{4} E^{2}(\vec{r}) \right] \text{ (work done by radiation pressure)}$$

$$\frac{\Delta\omega}{\omega} = -\frac{\int_{S} dS \,\vec{n}(\vec{r}) \cdot \vec{\xi}(\vec{r}) \left[\frac{\mu_{0}}{4}H^{2}(\vec{r}) - \frac{\varepsilon_{0}}{4}E^{2}(\vec{r})\right]}{\int_{V} dV \left[\frac{\mu_{0}}{4}H^{2}(\vec{r}) + \frac{\varepsilon_{0}}{4}E^{2}(\vec{r})\right]}$$

Expand wall displacements and forces in normal modes of vibration $\phi_{\mu}(\vec{r})$ of the resonator

$$\int_{S} dS \ \phi_{\mu}(\vec{r}) \ \phi_{\nu}(\vec{r}) = \delta_{\mu\nu}$$

$$\xi(\vec{r}) = \sum_{\mu} q_{\mu} \phi_{\mu}(\vec{r}) \qquad q_{\mu} = \int_{S} \xi(\vec{r}) \ \phi_{\mu}(\vec{r}) \ dS$$

$$F(\vec{r}) = \sum_{\mu} F_{\mu} \phi_{\mu}(\vec{r}) \qquad F_{\mu} = \int_{S} F(\vec{r}) \ \phi_{\mu}(\vec{r}) \ dS$$

Equation of motion of mechanical mode μ

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_{\mu}} - \frac{\partial L}{\partial q_{\mu}} + \frac{\partial \Phi}{\partial \dot{q}_{\mu}} = F_{\mu} \qquad L = T - U \qquad \text{(Euler-Lagrange)}$$

$$U = \frac{1}{2}\sum_{\mu} c_{\mu} q_{\mu}^{2} \quad \text{(elastic potential energy)} \qquad c_{\mu} \text{: elastic constant}$$

$$T = \frac{1}{2}\sum_{\mu} c_{\mu} \frac{\dot{q}_{\mu}^{2}}{\Omega_{\mu}^{2}} \quad \text{(kinetic energy)} \qquad \Omega_{\mu} \text{: frequency}$$

$$\Phi = \sum_{\mu} \frac{c_{\mu}}{\tau_{\mu}} \frac{\dot{q}_{\mu}^{2}}{\Omega_{\mu}^{2}} \quad \text{(power loss)} \qquad \tau_{\mu} \text{: decay time}$$

$$\overline{\ddot{q}_{\mu}} + \frac{2}{\tau_{\mu}} \dot{q}_{\mu} + \Omega_{\mu}^{2} q_{\mu} = \frac{\Omega_{\mu}^{2}}{c_{\mu}} F_{\mu}}$$

Page 131

The frequency shift $\Delta \omega_{\mu}$ caused by the mechanical mode μ is proportional to q_{μ}

$$\Delta \ddot{\omega}_{\mu} + \frac{2}{\tau_{\mu}} \Delta \dot{\omega}_{\mu} + \Omega_{\mu}^2 \Delta \omega_{\mu} = -\frac{\omega_0}{c_{\mu}} \left(\frac{F_{\mu}}{U}\right)^2 \Omega_{\mu}^2 U = -k_{\mu} \Omega_{\mu}^2 V^2$$

Total frequency shift:
$$\Delta \omega(t) = \sum_{\mu} \Delta \omega_{\mu}(t)$$

Static frequency shift: $\Delta \omega_0 = \sum_{\mu} \Delta \omega_{\mu 0} = -V^2 \sum_{\mu} k_{\mu}$
Static Lorentz coefficient: $k = \sum_{\mu} k_{\mu}$

Ponderomotive Effects – Mechanical Modes

$$\Delta \ddot{\omega}_{\mu} + \frac{2}{\tau_{\mu}} \Delta \dot{\omega}_{\mu} + \Omega_{\mu}^{2} \Delta \omega_{\mu} = -\Omega_{\mu}^{2} k_{\mu} V_{0}^{2} + n(t)$$

Fluctuations around steady state:

$$\Delta \omega_{\mu} = \Delta \omega_{\mu o} + \delta \omega_{\mu}$$
$$V = V_0 (1 + \delta v)$$

Linearized equation of motion for mechanical mode:

$$\delta \ddot{\omega}_{\mu} + \frac{2}{\tau_{\mu}} \delta \dot{\omega}_{\mu} + \Omega_{\mu}^2 \delta \omega_{\mu} = -2\Omega_{\mu}^2 k_{\mu} V_0^2 \delta v$$

The mechanical mode is driven by fluctuations in the electromagnetic mode amplitude.

Variations in the mechanical mode amplitude causes a variation of the electromagnetic mode frequency, which can cause a variation of its amplitude.

 \rightarrow Closed feedback system between electromagnetic and mechanical modes, that can lead to instabilities.

Lorentz Transfer Function

Lorentz Transfer Function

TM-class cavities (Jlab, 6-cell elliptical, 805 MHz, β=0.61) Rich frequency spectrum from low to high frequencies Large variations between cavities

GDR and SEL

Generator-Driven Resonator

- In a generator-driven resonator the coupling between the electromagnetic and mechanical modes can lead to two ponderomotive instabilities
- Monotonic instability : Jump phenomenon where the amplitudes of the electromagnetic and mechanical modes increase or decrease exponentially until limited by non-linear effects
- Oscillatory instability : The amplitudes of both modes oscillate and increase at an exponential rate until limited by non-linear effects

Self-Excited Loop-Principle of Stabilization

Controlling the external phase shift θ_l can cc fluctuations in the cavity frequency ω_c so the external frequency reference ω_r .

$$\omega = \omega_c + \frac{\omega_c}{2Q} \tan \theta_l$$

Jefferson Lab

Instead of introducing an additional external this is usually done by adding a signal in quadrature

 \rightarrow The cavity field amplitude is unaffected by the phase stabilization even in the absence of amplitude feedback.

Self-Excited Loop

- Resonators operated in self-excited loops in the absence of feedback are free of ponderomotive instabilities. An SEL is equivalent to the ideal VCO.
 - Amplitude is stable
 - Frequency of the loop tracks the frequency of the cavity
- Phase stabilization can reintroduce instabilities, but they are easily controlled with small amount of amplitude feedback

Input-Output Variables

Generator - driven cavity

Cavity in a self-excited loop

Lorentz Detuning

During transient operation (rise time and decay time) the loop frequency automatically tracts the resonator frequency. Lorentz detuning has no effect and is automatically compensated

Microphonics

- Microphonics: changes in frequency caused by connections to the external world
 - Vibrations

Jefferson Lab

Pressure fluctuations

When phase and amplitude feedbacks are active, ponderomotive effects can change the response to external disturbances

$$\delta \ddot{\omega}_{\mu} + \frac{2}{\tau_{\mu}} \delta \dot{\omega}_{\mu} + \Omega_{\mu}^{2} \delta \omega_{\mu} = -2\Omega_{\mu}^{2} k_{\mu} V_{0}^{2} \delta v + n(t)$$

Microphonics

Two extreme classes of driving terms:

- Deterministic, monochromatic
 - Constant, well defined frequency
 - Constant amplitude
- Stochastic
 - Broadband (compared to bandwidth of mechanical mode)
 - Will be modeled by gaussian stationary white noise process

Microphonics (probability density)

Microphonics (frequency spectrum)

TM-class cavities (JLab, 6-cell elliptical, 805 MHz, β=0.61) Rich frequency spectrum from low to high frequencies Large variations between cavities TEM-class cavities (ANL, single-spoke, 354 MHz, β =0.4)

Dominated by low frequency (<10 Hz) from pressure fluctuations

Few high frequency mechanical modes that contribute little to microphonics level.

Probability Density (histogram)

Autocorrelation Function

$$R_{x}(\tau) = \left\langle x(t) \, x(t+\tau) \right\rangle = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} x(t) \, x(t+\tau) \, dt$$

Stationary Stochastic Processes

x(t): stationary random variable

Autocorrelation function:
$$R_x(\tau) = \langle x(t) x(t+\tau) \rangle = \lim_{T \to \infty} \frac{1}{T} \int_0^T x(t) x(t+\tau) dt$$

Spectral Density $S_x(\omega)$: Amount of power between ω and $d\omega$

 $S_x(\omega)$ and $R_x(\tau)$ are related through the Fourier Transform (Wiener-Khintchine)

$$S_{x}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} R_{x}(\tau) e^{-i\omega\tau} d\tau \qquad \qquad R_{x}(\tau) = \int_{-\infty}^{\infty} S_{x}(\omega) e^{i\omega\tau} d\omega$$

Mean square value:

$$\langle x^2 \rangle = R_x(0) = \int_{-\infty}^{\infty} S_x(\omega) \, d\omega$$

Stationary Stochastic Processes

For a stationary random process driving a linear system $x(t) \longrightarrow T(i\omega) \longrightarrow y(t)$

 $\left\langle y^2 \right\rangle = R_y(0) = \int_{-\infty}^{+\infty} S_y(\omega) \, d\omega \qquad \left\langle x^2 \right\rangle = R_x(0) = \int_{-\infty}^{+\infty} S_x(\omega) \, d\omega$ $R_y(\tau) \quad \left[R_x(\tau) \right]: \text{ auto correlation function of } y(t) \quad \left[x(t) \right]$ $S_y(\omega) \quad \left[S_x(\omega) \right]: \text{ spectral density of } y(t) \quad \left[x(t) \right]$

$$S_{y}(\omega) = S_{x}(\omega) |T(i\omega)|^{2}$$

$$\left\langle y^{2} \right\rangle = \int_{-\infty}^{+\infty} S_{x} \left(\omega \right) \left| T(i\omega) \right|^{2} d\omega$$

Performance of Control System

Residual phase and amplitude errors caused by microphonics

Can also be done for beam current amplitude and phase fluctuations

Assume a single mechanical oscillator of frequency $\Omega_{\!\mu}$ and decay time τ_{μ}

excited by white noise of spectral density A²

Performance of Control System

$$<\delta\omega_{ex}^{2}>=A^{2}\int_{-\infty}^{+\infty}\left|G_{\mu}\left(i\omega\right)\right|^{2}d\omega=A^{2}\int_{-\infty}^{+\infty}\frac{d\omega}{\left|-\omega^{2}+\frac{2}{\tau_{\mu}}i\omega+\Omega_{\mu}^{2}\right|^{2}} = A^{2}\frac{\pi\tau_{\mu}}{2\Omega_{\mu}^{2}}$$

$$<\delta v^{2}>=A^{2}\int_{-\infty}^{+\infty}\left|G_{\mu}\left(i\omega\right)G_{a}\left(i\omega\right)\right|^{2}d\omega = <\delta\omega_{ex}^{2}>\frac{2\Omega_{\mu}^{2}}{\pi\tau_{\mu}}\int_{-\infty}^{+\infty}\left|\frac{G_{a}\left(i\omega\right)}{-\omega^{2}+\frac{2}{\tau_{\mu}}i\omega+\Omega_{\mu}^{2}}\right|^{2}d\omega$$

$$<\delta\varphi^{2}>=A^{2}\int_{-\infty}^{+\infty}\left|G_{\mu}\left(i\omega\right)G_{\varphi}\left(i\omega\right)\right|^{2}d\omega = <\delta\omega_{ex}^{2}>\frac{2\Omega_{\mu}^{2}}{\pi\tau_{\mu}}\int_{-\infty}^{+\infty}\left|\frac{G_{\varphi}\left(i\omega\right)}{-\omega^{2}+\frac{2}{\tau_{\mu}}i\omega+\Omega_{\mu}^{2}}\right|^{2}d\omega$$

JSA

The Real World

10

15

The Real World

The Real World

Piezo control of microphonics

MSU, 6-cell elliptical 805 MHz, β =0.49

Adaptive feedforward compensation

Figure 2. Active damping of helium oscillations at 2K.

Jefferson Lab

 $\rm Figure$ 3. Active damping of external vibration at 2K.

Piezo Control of Microphonics

FNAL, 3-cell 3.9 GHz

JSA

SEL and GDR

- SEL are best suited for high gradient, highloaded Q cavities operated cw.
 - Well behaved with respect to ponderomotive instabilities
 - Unaffected by Lorentz detuning at power up
 - Able to run independently of external rf source
 - Rise time can be random and slow (starts from noise)

- GDR are best suited for low-Q cavities operated for short pulse length.
 - Fast predictable rise time
 - Power up can be hampered by Lorentz detuning

TESLA Control System

Page 158

JSA

Basic LLRF Block Diagram

Low level rf control development

Concept for a LLRF control system

Pulsed Operation

 Under pulsed operation Lorentz detuning can have a complicated dynamic behavior

Page 161

Fig. 2: Lorentz force detuning measured for a TESLA cavity at different gradients.

2000

Pulsed Operation

 Fast piezoelectric tuners can be used to compensate the dynamic Lorentz detuning

Figure 2. Lorentz force compensation at the TTF

