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Historical Overview
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Perfect Conductivity
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Perfect Conductivity

Persistent current experiments on rings have measured

o
—s >10%
o

N

Resistivity < 1022 Q.cm

Decay time > 10° years

Perfect conductivity is not superconductivity

Superconductivity is a phase transition

A perfect conductor has an infinite relaxation time L/R
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Perfect Diamagnetism (Meissner & Ochsenfeld 1933)

Perfect conductor Superconductor

—_— e —
Case I. The specimen and then brought into a Case I. The specimen and then brought into a
is first cooled below its magnetic field, is first cooled below its magnetic field.
transition temperature transition temperature
oty
™ AT AT
N N N
Case 1I. The specimen and subsequently cooled The magnetic field is the field is pushed out
is brought into a magnetic below its transition tem- applied while the speei- when the specimen s
field while it is in the nor- perature. men is in the normal state; cooled below its transition
mal state

temperature.

Fia. 3. The behavior expected for a transition into a state of perfect conductivity.

The final state would depend on the serial order in which the specimen is brought
into the same external conditions.
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F1a. 4. Case II of Tig. 3 according to Meissner. The superconductor, in contrast
to the perfect conductor, has zero magnetic induction independently of the way in
which the superconducting state has been reached.
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Penetration Depth in Thin Films

A 5|
Jl|.r;r| [ ]
Very thin films
y >y
=4 a - a
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Very thick films L
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Critical Field (Type )

Superconductivity is destroyed by the application of a magnetic field

T 2
-noof{Z]

Type | or “soft” superconductors

win

Op
@M Page 7 [OMINION

UNIVERSITY

.{effégon Lab



Critical Field (Type Il or “hard” superconductors)

HA

surface
superconductivity

Schubnikov
phase

complete
Meissner effect

B =0
T, T
Figure 3-1
Phase diagram for a long cylinder of a Type II super-
conductor.

Expulsion of the magnetic field is complete up to H_,, and partial up to H_,

Between H_, and H_, the field penetrates in the form if quantized vortices
or fluxoids "
T

€
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Thermodynamic Properties
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FIGURE 2-3
Comparison of thermodynamic quantities in superconducting and normal states.

U.,(0) is chosen as the zero of ordinates in (c) and (d). Because the transition is of
second order, the quantities S, U/, and F are continuous at T.. Moreover, the slope of
F.; joins continuously to that of F,, at T, since F/8T = -8,
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Thermodynamic Properties

When T <T_ phase transition at H = H_(T) is of 1" order = latent heat

At T =T_ transition is of 2" order = no latent heat
jump in specific heat

Ces (Tc) - 3Cen (Tc)

C.,(T)=yT electronic specific heat

C..(T)=aT® reasonable fit to experimental data
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Thermodynamic Properties

AtT, 0 S(T)=S,(T.) The entropy is continuous
Recall: S(0)=0 and 95 _C
oT T
T 3 T, 3
= dl dt = ﬂdtaazg—z Ces=37’T—2
o T o T T, T
T® T
SS(T)_ -3 Sn(T)ZVT—

For T <T, S.(T)<S, (T)
= superconducting state is more ordered than normal state

A better fit for the electron specific heat in superconducting state is
bT,

C.,=ayT.e T with a=9,b=15 for T<T,
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Energy Difference Between Normal and
Superconducting State

U, (T.)=U.(T,) Energy is continuous

T 3
U,(M-U,T) = L (Cos = Cp )it = TLZ TH=T%) _%(Tcz _12)

C
2

2
at T=0 U (o)_u (o) _1 Tzzﬂc_ A, Isthe condensationenergy

2

atT =0, :C is the free energy difference
T

2 2
= AF :(un—US)—T(sn—SC)=%7TC{1— lj }

-
H (T) = (27[7/)%TC {1_@1] }

The quadratic dependence of critical field on T is
related to the cubic dependence of specific heat
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Isotope Effect (Maxwell 1950)

The critical temperature and the critical field at OK are dependent
on the mass of the isotope

T ~H_(0)~M™ with & =0.5

205 206 207 208 2.09 210
g M —

Figure 26: The critical temperature of various tin isotopes.
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Energy Gap (1950s)

At very low temperature the specific heat exhibits an exponential behavior

C.oce T  withb=15

S

Electromagnetic absorption shows a threshold

Tunneling between 2 superconductors separated by a thin oxide film
shows the presence of a gap

0.8
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Two Fundamental Lengths

* London penetration depth A

— Distance over which magnetic fields decay in
superconductors

* Pippard coherence length ¢
— Distance over which the superconducting state decays

NT)
1% = ng h(x)

Superconducting Normal

(1) —]

FIGURE 1-4
Interface between superconducting and normal domains in the intermediate stz
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Two Types of Superconductors

* London superconductors (Type Il)
._A>>§
— Impure metals
— Alloys
— Local electrodynamics

* Pippard superconductors (Type |)
_§>>A
— Pure metals
— Nonlocal electrodynamics
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Material Parameters for Some Superconductors

Superconductor %, (0) (nm) £, (nm) K 24(0)/kT, I(K)
Al 16 1500 0.011 3.40 1.18
In 25 400 0.062 3.50 33
Sn 28 300 0.093 3.55 3.7
Pb 28 110 0.255 4.10 7.2
Nb 32 39 0.82 3.5-3.85 8.95-9.2
Ta 35 93 0.38 3.55 4.46
Nb;Sn 50 6 8.3 4.4 18
NDbN 50 6 8.3 4.3 <17
Y ba,Cus0, 140 1.5 93 4.5 90
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Phenomenological Models (1930s to 1950s)

Phenomenological model:
Purely descriptive
Everything behaves as though.....

A finite fraction of the electrons form some kind of condensate
that behaves as a macroscopic system (similar to superfluidity)

At OK, condensation is complete

At T, the condensate disappears
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Two Fluid Model — Gorter and Casimir

T <T, x= fractionof"normal”electrons

(1-x) : fractionof "condensed" electrons (zero entropy)

Assume: F(T)=x"f (T)+(@1-x) f (T) free energy
1
fn (T) = —EYTZ

f (T)=-f= —%}/TCZ independent of temperature

4
Minimizationof F(T) gives x= [lj

C

= F(T)=x"f (T)+(1-x) f, (T):—,B{H(Tl) }
T3
:>Ces :37F

C
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Two Fluid Model — Gorter and Casimir

4
Superconducting state: F(T)=x"2f (T)+@1-x)f (T)= _'B{H(Tl) }
C
2
. Y 2 T
Normal state: F(T)=f (T)= _ET =283 (T_j

C

2

H . :
Recall 2 ¢ = difference in free energy between normal and
T

superconducting state

=/p 1—lzz = HC(T)zl—lz
Te H.(0) Te

The Gorter-Casimir model is an “ad hoc” model (there is no physical basis
for the assumed expression for the free energy) but provides a fairly
accurate representation of experimental results
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Model of F & H London (1935)

Proposed a 2-fluid model with a normal fluid and superfluid components

n, : density of the superfluid component of velocity v,
n, : density of the normal component of velocity v,

0D -
mg =—eE superelectrons are accelerated by E
J. =—en
oJ. ne’_
*=——FE superelectrons
ot m
J =0 E normal electrons
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Model of F & H London (1935)

T 2
dJ, _ne £
o m
Maxwell: Vxg=-28
ot
:i( mZVxJS+I§j:O = ¥ xJ, +B = Constant
at\ ne n.e
F&H London postulated: nnclz VxJ, +B=0
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Model of F & H London (1935)

combine with VxB =y, J,

veg. £ 5
m

B(x)= B, exp [-x/ 4]

1
m 2
A _[uonsez}

The magnetic field, and the current, decay
exponentially over a distance A (a few 10s of nm)
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Model of F & H London (1935)

5
L
2
HoNs€
3
From Gorter and Casimir two-fluid model 3

7Y z l
n, o< l—(—j i
TC

|
|
|
|
|
|
q!
|
|
|
|

1
ﬂ, T = )b O 0
((T) L (0) 1 25 30 35 20 T. 45
T 4 2 T(K)
1 N Fig. 21. Penetration depth as a function of temperature. (After Shoenberg, Nature,
T 43, 433, 1939.)
C
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Model of F & H London (1935)

—

—

London Equation: 1>V xJ, = _B_ _A

Ky
Vx A=H
choose V.A=0, A =0 onsample surface (London gauge)
=25 A

Note: Local relationship between J, and A

) win
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Penetration Depth in Thin Films

A 5|
Jl|.r;r| [ ]
Very thin films
y >y
=4 a - a
1) 17

Very thick films L
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Quantum Mechanical Basis for London Equation

2

e -, *
J(r)= ZHzml vV, - t/anw]—EA(rn)ww}J(r—rn)drl—drn

In zero field A=0 J(r)=0, w=y,

Assume 1 is "rigid", ie the field has no effect on wave function

p(r)e’

me

J(r)=- A(r)

p(r)=n

) win
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Pippard’s Extension of London’s Model

Observations:

-Penetration depth increased with reduced mean free path
- H, and T_ did not change

-Need for a positive surface energy over 104 cm to explain
existence of normal and superconducting phase in
intermediate state

Non-local modification of London equation

Local: J:-iﬁ\
cA
_R
_ R| R-A(r’) |e ¢
Non local: J(r)=- 30 J [ (4)] do
Aré A R
i_ 1.1
c & [
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London and Pippard Kernels

Apply Fourier transform to relationship between

C
J(r) and A(r) J (k) =——K(k) A(k)
__ 4
_ london Theory
i -
_J(K)
/’i—ic A(K) o pr,;d:o; theory
5
§
e . [
0 I g 3

Fig. 1. Comparison of supercurrent response to vector potential in London and Pippard
theorics (schematic).

Effective penetration depth

T
Jm In[l+ Kk(zk)}dk
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London Electrodynamics

Linear London equations

— —

dJ E O
s = VZH-—H =0
ot A, A2

together with Maxwell equations

37 - oH

VxH =] VXE =—pu,—
X S X Jlllk) iE)‘:

describe the electrodynamics of superconductors at all T if:

— The superfluid density n. is spatially uniform
— The current density J is small
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Ginzburg-Landau Theory

 Many important phenomena in superconductivity occur
because ng is not uniform
— Interfaces between normal and superconductors
— Trapped flux
— Intermediate state

* London model does not provide an explanation for the
surface energy (which can be positive or negative)

* GL is a generalization of the London model but it still
retain the local approximation of the electrodynamics

win
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Ginzburg-Landau Theory

« Ginzburg-Landau theory is a particular case of
Landau’s theory of second order phase transition

* Formulated in 1950, before BCS
« Masterpiece of physical intuition
* Grounded in thermodynamics

« Even after BCS it still is very fruitful in analyzing the
behavior of superconductors and is still one of the
most widely used theory of superconductivity
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Ginzburg-Landau Theory

« Theory of second order phase transition is based on
an order parameter which is zero above the transition
temperature and non-zero below

* For superconductors, GL use a complex order
parameter W(r) such that |W(r)|? represents the
density of superelectrons

« The Ginzburg-Landau theory is valid close to T,

win
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Ginzburg-Landau Equation for Free Energy

« Assume that ¥(r) is small and varies slowly in
space

« Expand the free energy in powers of ¥(r) and its
derivative

h2
+ —

f=f, +a|y/| o

win
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Field-Free Uniform Case

_ BB
-1 f— an —0(|W| + 2 |l//| f=f
a>0 a<0

p.f=-%

) p
g N~/ M
Near T. we must have >0 at)=a’(t-1)
I__I 2 (:lrlz

2
- __ﬁ:}M and H_ o (1-t)
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Field-Free Uniform Case

=t =alyf + 2l v.f=-%

B>0 at)=c'(t-1) =y | «@-t)

It is consistent with correlating |W(r)|? with the density of superelectrons

n,oc A2 e (l-t) nearT,

2 2
At the minimum f—f,=———=—oC (definition of H,)
28 87
= H, < (1-t)
which is consistent with H =H_(1-t%)

E;’ Page 36 DOMINION

UNIVERSITY

.geffézon Lab



Field-Free Uniform Case

Identify the order parameter with the density of superelectrons

1 AO_MPO[ _ 1o

— |y = — —
=t AT AT RO n B

2 2
since 1o7(M) _H.(T)
2 p 87

_ HMAM 2 o He(M) A'(T)
na(T) = pp 15(0) and n“g = pp 2{‘(0)
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Field-Free Nonuniform Case

Equation of motion in the absence of electromagnetic
field

1
e Vi +aT)y + Byl w=0

Look at solutions close to the constant one

w=y._ +5 where |y_| __em)
154
To first order L Vio-06=0
| : - -
4m’ e (T)

Whichleadsto  §~¢g ¥?"¢™
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Field-Free Nonuniform Case

O = e_ﬁr/f(T) where é:(T) _ 1 _ 27N ﬂL(O)
J2m ()| VmTHIT) A.(T)

is the Ginzburg-Landau coherence length.

S
(1_ tz )1/2

It is different from, but related to, the Pippard coherence length. ¢(T) =

GL parameter: K(T)= %

Both 4 (T) and &(T) diverge as T — T_ but their ratio remains finite

x(T) is almost constant over the whole temperature range

win
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2 Fundamental Lengths

London penetration depth: length over which magnetic field decay

(B [T
A(T)_(zeza'] T.-T

Coherence length: scale of spatial variation of the order parameter
(superconducting electron density)

h2 1/2 T
T)= c
=) (4m*a’) T.-T

C

The critical field is directly related to those 2 parameters

B 0,
"AT)= 22 E(T) A (T)

win
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Surface Energy

NT)

lyI? = ng h(x)
Superconducting Normal
() —]
o =—[H2E-HA]
8t °
H’A . : .
3 Energy that can be gained by letting the fields penetrate
T

2
= Energy lost by "damaging" superconductor
T
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Surface Energy o= [H:-H1]

Interface is stable if >0

If &E>>1 c>0
Superconducting up to H, where superconductivity is destroyed globally

If A >>¢ o0<0 forH?> Hf%
Advantageous to create small areas of normal state with large area to volume ratio

— quantized fluxoids

More exact calculation (from Ginzburg-Landau):
A 1

K=—<— :Type |
& 2
A 1

K=—>— - Type
£ > yp

win
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Magnetization Curves

B
l
1 J
K< —
V2 |
—4rM |
>4 Type 11 l
/
7 1
k=08 / |
K2 >4
P Type |
! < d l
Hc[ Hc ch / I H
FIGURE 5-2 0 H,., H, H.,

Comparison of magnetization curves for three superconductors with the same value I

of thermodynamic critical field H., but different values of x. For x < 1/,/2, the FIGUR}? 1-5 . . .

superconductor is of type I and exhibits a first-order transition at H,. For & > 1/\/5’ Comparison of flux penctration behavior of type I and type II superconductors with
5 . 1 TETer - / . ati Iy 8

the superconductor is type 11 and shows second-order transitions at H ,, and H _, (for the same thermodynamic critical field H.. H_, = \/2xH_. The ratio of B/H_, from

clarity, marked only for the highest « case). In all cases, the area under the curve is  this plot also gives the appr(.)x.imale_ valrialion of R,-"'R,,, where R is the e?lcclriczll
the condensation energy H?/8n resistance for the case of negligible pinning, and R, is the normal-state resistance.
Z/8m.
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Intermediate State

Vortex lines in
Pb ggln o,

At the center of each vortex is a
normal region of flux h/2e

_ win
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Critical Fields

Even though it is more energetically favorable for a type | superconductor
to revert to the normal state at H_, the surface energy is still positive up to
a superheating field H,,>H_. — metastable superheating region in which
the material may remain superconducting for short times.

HA

Type | H Thermodynamic critical field

c

H, = A, Superheating critical field

Jx

Field at which surface energy is

surface
superconductivity

Schubnikov
phase

Type I H., Thermodynamic critical field
complet
H = \/ 2 K H Meisps:ei effect
c2 c B =0 .
2 Ty E:
H, =
cl — Figure 3-1
H 02 Phase diagram for a long cylinder of a Type II super-

conductor.

N

i(In k+.008)H, (for x>1)
2K

win
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Superheating Field

| . L L L . L L)

2.5

Ginsburg-Landau: 20

0-9H, for x<<1

~ 1.2 H, forx-~1 | CEREAEDSE
~ 0.75 H_ for x >>1 »

Hsh -

e

The exact nature of the rf critical ] |
field of superconductors is still )
an open question RO W —
OI_—L l I0:4 - O.ISI - ITZ‘ . II._G‘ : IZ.O
GL Porameter x = %:I

Fig. 13: Phase diagram of superconductors®in the transition regime of type I and II.
The normalized critical fields are shown as a function of x.
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Material Parameters for Some Superconductors

Superconductor 2, (0) (nm) £, (nm) K 24(0)/kT, I.(K)
Al 16 1500 0.011 3.40 1.18
In 25 400 0.062 3.50 3.3
Sn 28 300 0.093 3.55 3.7
Pb 28 110 0.255 4.10 7.2
Nb 32 39 0.82 3.5-3.85 8.95-9.2
Ta 35 93 0.38 3.55 4.46
Nbs;Sn 50 6 8.3 4.4 18
NbN 50 6 8.3 4.3 <17
Y ba,Cu;0, 140 1.5 93 4.5 90
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BCS

 What needed to be explained and what were the
clues?

— Energy gap (exponential dependence of specific heat)

— |sotope effect (the lattice is involved)

0.585

0.580

— Meissner effect | osrs
> 0570

0.565

0.560
205 206 207 208 2.09 210

g M —

Figure 26: The critical temperature of various tin isotopes.
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Cooper Pairs

Assumption: Phonon-mediated attraction between
electron of equal and opposite momenta located
within 2@ of Fermi surface

Moving electron distorts lattice and leaves behind a l & o &
trail of positive charge that attracts another electron | = | | |
moving in opposite direction LSS S SR s SHE SRS

Fermi ground state is unstable L
/

: R . _
Electron pairs can form bound / 5 A ooper pair

(B, ﬂ.-'ﬁ{;)

states of lower energy - J - P, f
3 P, Spin

Bose condensation of overlapping
COO per p a| rs Into a COh erent Figure 20: A pair of electrons of opposite momenta added to the full Fermi sphere.
Superconducting state
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Cooper Pairs

One electron moving through the lattice attracts the positive ions.

Because of their inertia the maximum displacement will take place

i
d~vp ~ 100 — 1000nm behind.
W
—lattice -
planes
———————— :ﬂ’-ﬁ -p-‘
1
'
1
amplitude - |
of lattice | :
deformation l I
= P -
direction
d of electron

.{effegon Lab
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BCS

@ metal ion

O AAMNANASNS—D
Cooper pair

single
electron

Figure 22: Cooper pairs and single electrons in the crystal lattice of a superconductor. (After
Essmann and Triuble [12]).

Fermi sphere, p2/2m=Eg¢
2 Egt huwy

Py

possible Cooper pairs:
(5.‘5) i (l-:‘-': _BI }

(P =P" ), eemeee

Figure 23: Various Cooper pairs (g, —9), (7', —5"), (§”,—5"),...in momentum space.

The size of the Cooper pairs is much larger than their spacing

They form a coherent state
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BCS and BEC

.geffézon Lab

BCS

weak coupling

large pair size
k-space pairing

strongly overlapping
Cooper pairs

@ &

Page 52

BEC

strong coupling

small pair size
r-space pairing

1deal gas of
preformed pairs
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BCS Theory

0),,]2), :states where pairs (4,-G) are unoccupied, occupied
a,. b, . probabilites that pair (G,-G) is unoccupied, occupied
BCS ground state Sy
k+q
‘\P>=1;I(aQ‘O>q+bQ‘l>q) g
—q) !
_ -k

Assume interaction between pairs g and k x N

qu - _V If ‘gq‘ S ha)D and ‘gk‘ S th Electron-electron interacziiu:iea‘lp-;onons. In process (a) the

electron K emits a phonon of wave-vector —g. The phonon is

= O OtherW|S€ absorbed later by the second electron. In process (b) the sec-
ond electron in staie (—k) emits a phonon q, subsequently ab-

sorbed by the first electron,

E;’ Page 53 DOMINION
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BCS

« Hamiltonian

F =) gn + OV, Cc CC
k gk

c, destroys an electron of momentum k

c; creates an electron of momentum k

n,=c.c, number of electrons of momentum k

 Ground state wave function
|‘P> = I;I(aq +qu;qu)|¢0>
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BCS

« The BCS model is an extremely simplified model of reality
— The Coulomb interaction between single electrons is ignored
— Only the term representing the scattering of pairs is retained

— The interaction term is assumed to be constant over a thin
layer at the Fermi surface and 0 everywhere else

— The Fermi surface is assumed to be spherical

* Nevertheless, the BCS results (which include only a very few
adjustable parameters) are amazingly close to the real world
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BCS

Is there a state of lower energy than
the normal state?
a,=0, b,=1 for & <0
a,=1b,=0for £, >0 —-

----—-u‘,c2 atT=0

——— Fermi function at T

5

yes:  2bj=1-—— =i T e
é: —I—AO FIGURE 2-1

q Plot of BCS occupation fraction v vs. electron energy measured from the chemical
potential (Fermi energy). To make the cutoffs at +hw_ visible, the plot has been
made for a strong-coupling superconductor with N(0)V = 0.43. For comparison, the
Fermi function for the normal state at T, is also shown on the same scale. using the
BCS relation A(0) = 1.76kT..

=& u

where

1
hagy -

— ~ p(O)V
A, = = 2haw, €

sinh| ———
p(OV

i wn
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BCS

Critical temperature

c

KT. = 1.14hw, exp|- L
N (E;)

A(0)= 1.76 kT,

element Sn In TI Ta Nb Hg Pb
A0)/kgT. [1.75 1.8 1.8 1.75 1.75 23 2.15

Coherence length (the size of the Cooper pairs)

hv,
KT

C

£ =18
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BCS Condensation Energy

.geffégon Lab

Condensation energy:

A, 1k
& 1k

@ &

Il

I

E.-E =

POV

S n 2

2
NI
Ec 87

10K

10*K

Page 58
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BCS Energy Gap

At finite temperature:

Implicit equation for the temperature dependence of the gap:

"o tanh | (> + A%)Y2 ] 2kT |

de

VP(O) J (&% +A%)¥

A(T) A

N

A(0) = 1.76kpT,

1

Figure 4-4

1.0
i S 08
A ~3.2kpTo[1 — (T/Ty) a
= 06
.—
2 04
5 0.2
T/T, 0

Variation of the order parameter A with temperature in the BCS

approximation,
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BCS Excited States

Energy of excited states:

/ 2 2 B
2 fk + A 0 NE) Superconducting
N(0O)

Normal

€k

B>t

‘. E FIGURE 2-4
g( ) Density of states in superconducting compared to normal state. All k states whose

1 energies fall in the gap in the normal metal are raised in energy above the gap in the
superconducting state.

_ i
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BCS Specific Heat

Specific heat

C

€s

I
@
X

©

|

o
-
—
I

59,17 exp (-15 T/T)
rTe

03

Ces

yTc
0.1

0031 e vanadium

o tin

0.0l 1 l 1
1.0 2.0 3.0 4.0 5.0

T/T

Fig. 22. Reduced electronic specific heat in superconducting vanadium and tin.
[From Biondi et al., (150).]
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Electrodynamics and Surface Impedance
—_—  nBCS Model

Y.
Hp+H,, ¢=ih——
O¢+ ex ¢ I 8’[

e
H, =—) A(r,t)p
ex mCz (I )pl

H, Is treated as a small perturbation
H., <<H,

There is, at present, no model for superconducting
surface resistance at high rf field

R

, o
J o< j RIR-AJl (a:, R, T)e dr similar to Pippard's model
R

J(k) = —ﬁ K (k) A(K)

K(0)#0: Meissner effect
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Penetration Depth

2 dk
ﬂz—J dk specular
7w d K(Kk)+k* (sp )

Represented accurately by 4 ~

2000

1200

IO00 K
da 800
e BCS
dy gh
600 THEORY
q | ¥ °-

400

200

1.0 1.5 20 25 30 35 40 45 50
y:-—l——.—
V |—|I
Fig. 30. Temperature dependence of dZ/dy for tin obtained by Schawlow and Devlin (207)
compared with the theoretical curve obtained from the BCS theory.
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Surface Resistance

.geffézon Lab

Temperature dependence
t4
(1-t2)2

—close to T, : dominated by change in A(t)

—for T < T—ZC: dominated by density of excited states ~ e'%T

R, P exp _A
T KT

Frequency dependence

@° is a good approximation
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Surface Resistance

0 oy e nian S M N G T T | PR .--';'!,E-'?T" o
0.9 s ":! -
& ,,//.,{/ yas
< osgl- S A / / jh“ B
2 o.77 v“ﬁ?/ / | - / w‘g -
CCO "2,.“-':.:‘:’./":0‘;:\‘-a o/ i‘/ ";‘Pa l' -
g 0.6~ oS S e &
: & & & s
- & : & Q
wl 0.5 ‘ ")con K. & & o .
& / o & A §
W . © "3 /
r 04— / ] o’(ﬂ a:, - A d —
3 -/I / ' ] b a /
B8 ol P / s %
5 jn/ w of Q/
9 0.2} — / v P4 -
0.1 _,...--"/v/"""/:-'”/
! T i . I'-.-.- ]
Ol ypasmm pir==pmatt =" "7 L I R R, IO LS |
0.3 0.4 0.5 06 0.7 08 0.9 1.O

Reduced Temperoture, 1= T/ T¢

Fig. 1. Measured values of the surface resistance ratio r of superconducting aluminum as a
function of the reduced temperature ¢ at several representative wavelengths. The wavelengths
and corresponding photon energies are indicated on the curves
[After Biondi and Garfunkel (75).]
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Surface Resistance

.{effégon Lab

103 ; : .

Niobium —

104
10 |3

106 |

Rs (Ohms)

10'7 L

10°8

-9 | { P
1040 2.0 3.0 4.0 5.0

Figure 4.5: Theoretical surface resistance at 1.5 GHz of lead, niobium and
NbzSn as calculated from program [94]. The values given in Table 4.1 were
used for the material parameters.
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Surface Resistance

RIT-R,, ~ exp-[(AZKT, NT_/T)]
1076
L
g
o
w
w .
=z i f ‘ I
n ; |
-, ! |
o= 3 T . i
w \ |
w .
< \ | A/KT =164
= : |
@ /o
10-8 : |
5 h !
| N \\i\\b\‘v
i \ ! \\‘\
| N ik
| | \ 100G
10-° : ' :
2 3 4 5 6 7 8

REDUCED TEMPERATURE T./T

Fig. 2. Temperature dependence of surface resistance of niobium at
3.7 GHz measured in the TE;,, mode at H, ~10G. The values
computed with the BCS theory used the following material para-
meters:

T.=925K; i(T=0,1=00)=3204;
A(0)kT=1.85; & (T=0,1=00)=620A; I=1000Aor 80 A.
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Fig. 5. The surface resistance of Nb at 42K as a function of
frequency [62,63]. Whereas the isotropic BCS surface resistance
(- - ) resulted in Rocw'® around 1 GHz, the measurements fit
better to @? (- — -). The solid curve, which fits the data over the
entire range, is a calculation based on the smearing of the BCS
density-of-states singularity by the energy gap anisotropy in the
presence of impurity scattering [61]. The authors thank G. Miiller
for providing this figure.
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Surface Impedance - Definitions

* The electromagnetic response of a metal,
whether normal or superconducting, is
described by a complex surface
Impedance, Z=R+iX

R : Surface resistance
X : Surface reactance

Both R and X are real

win
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Definitions

For a semi- infinite slab:

E, (0)
jO“JX(z)dz

Z = Definition

_E0) E, (0)

— = From Maxwell
“H,0 CHE @, o

win
Op

Ej Page 69 MINION
UNIVERSITY

.{effézon Lab



Definitions

The surface resistance is also related to the power flow
into the conductor

Z=27,5(0,)/S(0.)

( ) = 3772 Impedance of vacuum

U')

x H Poynting vector

and to the power dissipated inside the conductor

P=1iRH?0)
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Normal Conductors (local limit)

Maxwell equations are not sufficient to model the
behavior of electromagnetic fields in materials.
Need an additional equation to describe material

properties

.!effegon Lab

N, I ¢ =0 (w)=

ot 7 1 1-iwrt

For Cu at 300 K, 7=3x10"sec
so for wavelengths longer than infrared J =cE
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Normal Conductors (local limit)

In the local limit J(z)=0E(2)
The fields decay with a characteristic NG
length (skin depth) ) =( )
My OO

EX (Z) — EX (0) e—z/5 e—iz/5

)
H,(2) = Y E,(2)

,_E0) _@+)
S H,0) 2

) ()
Uy WO = —5 —(1+|)( 20_]
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Normal Conductors (anomalous limit)

« At low temperature, experiments show that the surface
resistance becomes independent of the conductivity

* As the temperature decreases, the conductlgyity o increases
— The skin depth decreases 5:[ 2 ]
My OO

— The skin depth (the distance over which fields vary) can
become less then the mean free path of the electrons (the
distance they travel before being scattered)

— The electrons do not experience a constant electric field
over a mean free path

— The local relationship between field and current is not
valid J(z) % 0 E(2)
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Normal Conductors (anomalous limit)

Introduce a new relationship where the current is related to
the electric field over a volume of the size of the mean
free path (1)

Specular reflection: Boundaries act as perfect mirrors
Diffuse reflection: Electrons forget everything
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Normal Conductors (anomalous limit)

In the extreme anomalous limit

1.2 |
1.0 g el
31° g% 32K
a7 >1 ces
o _ 08 e
cl [
c
E 06 K
FO‘}
o
0.4 .
13
J3 12
32,,=Z, 0= 0| (14iV3) oo g "
p= p= 1677 & 293 K
0 1 1 i
0 20000 40000 60000 80000

\fc (1/Qm)

Fig. 2 Anomalous skin effect in a 500 MHz Cu cavity

p . fraction of electrons specularly scattered at surface
1- p: fraction of electrons diffusively scattered
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Normal Conductors (anomalous limit)

1/3
R(l = o) =3.79x10"° 0" (L)
o

ForCu: |/0=6.8x10" Q-m?

| 1/3
3.79x10°w*?| —
R(4.2 K,500 MHz) ~ 7 @ (0') ot
R(273 K,500 MHz) U0 '
20

Does not compensate for the Carnot efficiency
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Surface Resistance of Superconductors

Superconductors are free of power dissipation in static fields.

In microwave fields, the time-dependent magnetic field in the
penetration depth will generate an electric field.

VxE=-28
ot

The electric field will induce oscillations in the normal
electrons, which will lead to power dissipation
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Surface Impedance in the Two-Fluid Model

In a superconductor, a time-dependent current will be carried
by the Copper pairs (superfluid component) and by the
unpaired electrons (normal component)

J=J +1,
J =0 Ee (Ohm's law for normal electrons)
2ne’ _ -

J, =i——E.e™“ (myV, =—eE,e™)

m, @
J=0cE,e

. . 2n e° 1

o =0, tlo, with o, =——=

mea) - luo;thw

.{effegon Lab
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Surface Impedance in the Two-Fluid Model

For normal conductors R

For superconductors

R =R 1 1 o, 1o,
° A (o, +io,) | A o.+0; A O!

The superconducting state surface resistance is proportional to the
normal state conductivity
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Surface Impedance in the Two-Fluid Model

21O,
A o,

n e’l [ A(T)} 1

o, = o< | eXp| ——— O, =——
M, Ve KT Ho AL OO

A(T)
R S w’ | exp| ———=
oA p[ T }

This assumes that the mean free path is much larger than the
coherence length
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Surface Impedance in the Two-Fluid Model

For niobium we need to replace the London penetration depth with

A=A J1+£&71

As a result, the surface resistance shows a minimum when

£~
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Surface Resistance of Niobium

Surface Resistance -Nb -1500 MHz
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Electrodynamics and Surface Impedance
— nBCS Model

HO¢+ Hex ¢ — Iha_¢

ot
e
H =—>» A(r,t)p
X mcz (I )pl
H, is treated as a small perturbation H. <<H,

There is, at present, no model for
superconducting surface resistance at high rf field

; OCJ‘R[R-A] I(a),R,T)e_'E ir

similar to Pippard's model

K(0)=0: Meissner effect
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Surface Resistance of Superconductors

Temperature dependence

—close to T, :
4
dominated by change in A(t) t—3 103 . . .
(1—t2)4 M
104 NbySh ...
—for T < T—CZ 10|
2 z
. . . vy, g 10°
dominated by density of excited states ~e /T &
Rs ~ é(()2 eXP (—A) 10°8
T KT :

Frequency dependence

Figure 4.5: Theoretical surface resistance at 1.5 GHz of lead, nichium and
5 Nb3Sn as calculated from program [94]. The values given in Table 4.1 were

) iS a gOOd approximation used for the material parameters.
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Surface Resistance of Superconductors

* The surface resistance of superconductors depends on
the frequency, the temperature, and a few material
parameters

— Transition temperature
— Energy gap

— Coherence length

— Penetration depth

— Mean free path

* A good approximation for T<T_/2 and w<<A/h is

R, ~éa)2 exp _A +R .
T KT
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Surface Resistance of Superconductors

R, ~ Téco2 exp (—Aj +R .

KT
In the dirty limit | <« fo Rocs o< | L2
In the clean limit | > é:o R o<
Res:

Residual surface resistance
No clear temperature dependence
No clear frequency dependence

Depends on trapped flux, impurities, grain boundaries, ...
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Surface Resistance of Superconductors

RIT-R,, ~ exp-[(AZKT, NT_/T)]
1076
L
g
o
w
w .
=z i f ‘ I
n ; |
-, ! |
o= 3 T . i
w \ |
w .
< \ | A/KT =164
= : |
@ /o
10-8 : |
5 h !
| N \\i\\b\‘v
i \ ! \\‘\
| N ik
| | \ 100G
10-° : ' :
2 3 4 5 6 7 8

REDUCED TEMPERATURE T./T

Fig. 2. Temperature dependence of surface resistance of niobium at
3.7 GHz measured in the TE;,, mode at H, ~10G. The values
computed with the BCS theory used the following material para-
meters:

T.=925K; i(T=0,1=00)=3204;
A(0)kT=1.85; & (T=0,1=00)=620A; I=1000Aor 80 A.
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Fig. 5. The surface resistance of Nb at 42K as a function of
frequency [62,63]. Whereas the isotropic BCS surface resistance
(- - ) resulted in Rocw'® around 1 GHz, the measurements fit
better to @? (- — -). The solid curve, which fits the data over the
entire range, is a calculation based on the smearing of the BCS
density-of-states singularity by the energy gap anisotropy in the
presence of impurity scattering [61]. The authors thank G. Miiller
for providing this figure.
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Surface Resistance of Niobium

Surface Resistance of Nio bium
at F =700 MHz

10000000
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Surface Resistance of Niobium

1.0E-5 e maa }
1500 MHz
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Super and Normal Conductors

« Normal Conductors
— Skin depth proportional to w12
— Surface resistance proportional to w12 — 23
— Surface resistance independent of temperature (at low T)
— For Cu at 300K and 1 GHz, R;=8.3 mQ

« Superconductors
— Penetration depth independent of w
— Surface resistance proportional to w?
— Surface resistance strongly dependent of temperature
— ForNb at2 Kand 1 GHz, Ri=7 nQ

However: do not forget Carnot
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RF Cavity

* Mode transformer (TEM—TM)
« Impedance transformer (Low Z—High Z)

« Space enclosed by conducting walls that can sustain an
infinite number of resonant electromagnetic modes

« Shape is selected so that a particular mode can
efficiently transfer its energy to a charged particle

* An isolated mode can be modeled by an LRC circuit
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RF Cavity

Lorentz force F =q(E+VxB)

An accelerating cavity needs to provide an electric field E longitudinal
with the velocity of the particle

Magnetic fields provide deflection but no acceleration

DC electric fields can provide energies of only a few MeV

Higher energies can be obtained only by transfer of energy from
traveling waves —resonant circuits

Transfer of energy from a wave to a particle is efficient only is both
propagate at the same velocity

win
—

O
.{effezon Lab @ @S ‘ Page 92 TOMINION
UNIVERSITY



Equivalent Circuit for an rf Cavity

Simple LC circuit representing an
accelerating resonator

Metamorphosis of the LC circuit into
an accelerating cavity

Chain of weakly coupled pillbox

cavities representing an accelerating
module

Chain of coupled pendula as its
mechanical analog

.geffézon Lab

repesentin % an accelerating
resonator.
2
we* LC
(e R o)
oo Qo
/ = . -
— — E —
—_— =
@
e Tes)l
N = c) d) e)

Metamorphosis of the L-C circuit of Fig.1 Into an accelerating cavity (after R.P.Feynman33)).

Fig. 5d shows the cylindrical “pillbox ca
with beam holes (typical 3 between 0.5 and 1.0). Fig. 5c resembles a low 8 version of the

vity” and Fig. Se a slightly modified pillbox cavity

pillbox variety (0.2<8<0.5).

A

_U U U

L L] ;

Chain of weakly-coupled pillbox

1L
d 4

NSAN

Chain of coupled pendula as a
cavitlies representing an accele- mechanical analogue to Fig. 6a

rating module
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Electromagnetic Modes

Electromagnetic modes satisfy Maxwell equations

1 0% \|E
Vo= |{-1=0
( c’ 8t2j{H}

With the boundary conditions (assuming the walls are
made of a material of low surface resistance)

—

no tangential electric field AXE =0

no normal magnetic field ieH =0
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Electromagnetic Modes

Assume everything ~ gt

.
-2

For a given cavity geometry, Maxwell equations have an infinite number
of solutions with a sinusoidal time dependence

For efficient acceleration, choose a cavity geometry and a mode where:
Electric field is along particle trajectory
Magnetic field is 0 along particle trajectory

Velocity of the electromagnetic field is matched to particle velocity
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Accelerating Field (gradient)

Voltage gained by a particle divided by a reference length
E= %j E,(z)cos(wz/ fc)dz

N2

For velocity-of-light particles L >

For less-than-velocity-of-light cavities, there is no universally
adopted definition of the reference length
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<H?>

<E}>
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Design Considerations

minimum

minimum

minimum

minimum

minimum
maximum

&34

critical field

field emission

shunt impedance, current losses

dielectric losses

control of microphonics
voltage drop for high charge per bunch
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Energy Content

Energy density in electromagnetic field:

U= %(EOEZ + 1,H?)

Because of the sinusoidal time dependence and the 90°
phase shift, he energy oscillates back and forth between
the electric and magnetic field

Total energy content in the cavity:

€ 2 MU 2
U—?OJVdV\E\ _%jvdV\H\
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Power Dissipation

Power dissipation per unit area

R
[ -

dP _ w0

2
da H”‘

Total power dissipation in the cavity walls

R
P =7S£da‘H”‘2
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Quality Factor

Quality Factor Qq:

0. = Energy stored in cavity _ wU
° Energy dissipated in cavity walls per radian P, _
= w7, =2
0to Aw,
2
_au, [,V H
Q= - 2
s Jda‘H”‘
A

E :JM Op
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Geometrical Factor

Geometrical Factor QRs (Q)
Product of the Quality Factor and the surface resistance
Independent of size and material
Depends only on shape of cavity and electromagnetic mode

jvdv H|’ :27[\/;0 1 jvdv H|’ omp jvdv H|’

G=0R, = =
T e Ve 2 aanf A Jaap
A A A
n =377 Impedance of vacuum
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Shunt Impedance, R/Q

2
Shunt impedance Rg,: R, = Ve in O
I:)diss
V. = accelerating voltage
V2
Note: Sometimes the shunt impedance is defined as C
or quoted as impedance per unit length (ohm/m) 2Fliss

R_V2 P _EZL2
Q Pl U w

R/Q (in Q)
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Q — Geometrical Factor (Q R,)

Energy content U 0]
Q: : : —= O—=0T=—"
Energy disspated during one radian P Aw
Rough estimate (factor of 2) for fundamental mode
3
a):ZﬂC: 2r 1 U:&szdV:&EHgﬂ
A g M, 2L 2 2 2 6
p-1r [H7dA = LRI L.
2 2 2
QR ~Z % = 2000
6 \ &

G =QR, is size (frequency) and material independent.
It depends only on the mode geometry

It is independent of number of cells

For superconducting elliptical cavities QR, ~ 275Q

54 win
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Shunt Impedance (R,,), R, R, R/Q

V? EZL?
Rsh: P = 1 1
“RHZm? >

2 2

In practice for elliptical cavities
R;:R, = 33,000 (Q°) per cell
R, /Q=100Q per cell

R,R,and R, /Q
Independent of size (frequency) and material
Depends on mode geometry
Proportional to number of cells

@56 i
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Power Dissipated per Unit Length or Unit Area

P 1 E®R,
L R QrR, @
Q
For normal conductors Rg o< a)}/2
1
P v o2
L
1
P w o2
A
For superconductors R, < &’
P
- oc )
L
P
- oc a)z
A

@Sﬁ i
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External Coupling

« Consider a cavity connected to
an rf source

* A coaxial cable carries power
from an rf source to the cavity

* The strength of the input
coupler is adjusted by changing
the penetration of the center
conductor

» There is a fixed output coupler,
the transmitted power probe,
which picks up power
transmitted through the cavity.
This is usually very weakly
coupled

.geffézon Lab
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TRANSMITTED
POWER PRQBE

--------------

INPUT
COUPLER

| TMOtﬂ
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Cavity with External Coupling

Consider the rf cavity after the rf is turned off. 4y
Stored energy U satisfies the equation: dat =Py

Total power being lost, P, is:  F,=F,, +F +FR
P, is the power leaking back out the input coupler.

P, is the power coming out the transmitted power coupler.
Typically P, is very small = P, # Py + P,

U
Recall Q,= %%
I:)diss
Similarly define a “loaded” quality factor Q.: Q, = a;SU

tot
_ @t

Now dU __a)OU S U=Uge o

dt  Q

. energy in the cavity decays exponentially with time constant:z, =

Q

@,

win
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Cavity with External Coupling

Equation Fo _ P R

w,U - w,U

suggests that we can assign a quality factor to each loss mechanism,

such that 11 ) 1
QL QO Qe
w,U

where, by definition, Q, = P

€

Typical values for CEBAF 7-cell cavities: Q,=1x107°, Q_, ~Q, =2x10"-

win
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Cavity with External Coupling

« Define “coupling parameter”: B = &
Q.
therefore 1 = 1+ 5)
Q G
: _ P
pis equal to: B =—
P

 |ttells us how strongly the couplers interact with the cavity. Large 3
implies that the power leaking out of the coupler is large compared
to the power dissipated in the cavity walls.

win
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Several Loss Mechanisms

P= Z P -wall losses

-power absorbed by beam
-coupling to outside world

Associate Q will each loss mechanism
U

Q = ey (index O is reserved for wall losses)
Loaded Q: Q,
1 DR 1
Q o “Q
5-Q_R
Q R

win
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Equivalent Circuit for an rf Cavity

Simple LC circuit representing
an accelerating resonator

Metamorphosis of the LC circuit
into an accelerating cavity

Chain of weakly coupled pillbox

cavities representing an accelerating
cavity

Chain of coupled pendula as
its mechanical analogue

Jefferdon Lab

@_M Page 111

—r—*ﬂ—
q
s

-

(o @)

e —

O —

- —
® @

a) bl c)

Metamorphosis of the L-C circuit of Fig.1 into an accelerating cavity (after R_P.Fe)'nman:u)).

Simple lumped L-C clreuie

repesentin, € an accelerating
resonator.

wo? = Le
o0 [e N}

N B,
_— E —
—
® © U

d) e)

Fig. 5d shows the cylindrical “pillbox cavity” and Fig. Se a slightly modified pillbox cavity
with beam holes (typical B between 0.5 and 1.0). Fig. 5c resembles a low 8 version of the

pillbox variety (0.2<8<0.5).

1L

I

—_— — e ——

L]

]
4L

Chain of weakly-coupled pillbox
cavities representing an accele-
rating module

NN

SIS .

Chain of coupled pendula as a
mechanical analogue to Fig. 6a
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Parallel Circuit Model of an Electromagnetic Mode

Power dissipated in resistor R: 1V2 J_
Pdiss :EFC Lé %R ——g HV
Shunt impedance: V2 ‘
Ran =5 = R, =2R
Quality factor of resonator:
U 1/2
Q, = i o,CR = R R(Ej
I:)diss Lwc L

@56 i
Op
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1-Port System

&
‘. ® é L R
& T Total impedance: k*Z, + o
| Lk 1+ 2i <0 A
Lz W,
ANN——F+
,Q,,\gx - % %g LC &
| |
kV
| = - V =KV, i
k*Z, + 0 R +k?Z £1+2| QA j
1+2i <2 A @o
a)O

@Sﬁ i
Op
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1-Port System

Energy content U _1 CV? :E&V2
2 2 WwR
2
:%Q_OR kzvg2 R 5
0,
(R+k?Z,) +4Kk*Z2Q¢ (A‘f))
(00
V2
Incident power: P,_=——
8Z,
: : .. R
Define coupling coefficient:  f=—;
kO ZO
Uu Q 45 1
Pe @ (1+ ) [ 29 ‘(Ao
1+ @,

Op
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1-Port System

Power dissipated P, _9 P.. 4h > L > >
% @A) (20, [ (a0
1+ 5 ) \ o,
. . U .
Optimal coupling: 5 maximum or P, =P
= Aw =0, B =1 . critical coupling
Reflected power P, =P,.—Pi.=P.|1- 4b > L >
+A) | (2Q Aw
I 1+ 8 w,

i
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1-Port System

At resonance
Dissipated and Reflected Power

u-_ 48 _p * // NS
@, (1+ f) i S~ —
0.6 ’ ~ ——
I:)diss — 4ﬂ 2 I:)inc Zj \ /><--~..__
(1+5) i e —
NA e
~_8Y N A ~
Pref :(ﬁj I:)inc 0-;

1+ [

£ iy
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Equivalent Circuit for a Cavity with Beam

 Beam in the rf cavity is represented by a current
generator.

* Equiv i

~ im:C) L E % —- C)'f ~ et v o R = RSh
Iv(tj:iu‘: o T o b= lbe C=VCC L T
cE (1+ /)

[

I, produces V. with phase  (detuning angle)

~

i, produces V, with phase

L
2

V, =V, -V,
tan w =-2 % A
1+ 5 w,

.{eff920n Lab @ @S : Page 117 TONRNION
UNIVERSITY



Equivalent Circuit for a Cavity with Beam

.gefﬂ;gon Lab

@ &

Page 118

I,: beam rf current
l,- beam dc current
6,: beam bunch length
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Equivalent Circuit for a Cavity with Beam

(1+ B +b) +[(1+ B)tany —btan ¢]2}

gR4,B{

Power absorbed by the beam R i, cos¢
Power dissipated in the cavity V

C

b =

Minimize P, : Pon |1+b|
PoRt _ VZ [1+b|+(1+b)
° R, 2

) win
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Frequency Control

Energy gain W =qV cos¢

oW oV
= — 00t
W y ¢tan ¢

Energy gain error
The fluctuations in cavity field amplitude and phase come mostly
from the fluctuations in cavity frequency

Need for fast frequency control
Minimization of rf power requires matching of average cavity
frequency to reference frequency

Need for slow frequency tuners

win
—

O
.{effezon Lab @ @S ‘ Page 120 TOMINION
UNIVERSITY



Some Definitions

 Ponderomotive effects: changes in frequency caused by the
electromagnetic field (radiation pressure)

— Static Lorentz detuning (cw operation)
— Dynamic Lorentz detuning (pulsed operation)

 Microphonics: changes in frequency caused by connections to
the external world

— Vibrations
— Pressure fluctuations

Note: The two are not completely independent.

When phase and amplitude feedbacks are active, ponderomotive
effects can change the response to external disturbances

win
—
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Cavity with Beam and Microphonics

The detuning is now

tany = -2Q,

ow. T ow

0

m

0

0w,

tan Yo = _2QL

@,

where Jdw, is the static detuning (controllable)

and Jow_ is the random dynamic detuning (uncontrollable)

Frequency (Hz)

od & kMO N B 5D o

T

w
o

95

100

105

Time (sec)

110

115

120

.geffézon Lab

Probability Density
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0.15

Probability Density
Medium p CM Prototype, Cavity #2, CW @ 6MV/m
400000 samples

/N

[\

[\

-6 -4 -2 0 2 4 6 8
Peak Frequency Deviation (V)
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Q,,; Optimization with Microphonics

Condition for optimum coupling:

B = \/(b +1)’ +(2Qo me]
Q,

0

and

pont _ Ve (b+l)+\/(b+1)2+[2Qo 5“’”1]

J 2R, @,

2

0w
ﬁopt :\/1+[2Q0 a)o ]
and _ _

2 2
port = Ve |1, J14[ 2 O
’ 2R, @,

=U dw, If ow, is very large

@56 i
Op
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Example

.!effegon Lab

7-cell, 1500 MHz
20 \
18
16 ‘,? Yi
/
yd
14 rd
12 . —
— i ———
= S
= 10 A //
o R S— P
NS
8 e
‘\"\...
‘H“__
6 —21.0 MV/m, 460 uA, 50 Hz 0 deg
—21.0 MV/m, 460 uA, 38 Hz 0 deg
4 —21.0 MV/m, 460 uA, 25 Hz 0 deg
—21.0 MV/m, 460 uA, 13 Hz Odeg
2
—21.0 MV/m,460 uA, 0Hz Odeg
0 | I A A A
1 10 100
Qext (10°)
@ @M Page 124
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Example

3-spoke, 345 MHz, 3=0.62

/
14.0 [ /
Ay I/
\ Jirs's
12.0 A /117
A Firi/i
NN Farasi
A [
10.0 AN Ji'1 /i
: AN YAV
AN FiVe/i
AN VA8
E 8.0 N\ \\:\ ' N/ 7/
= SAN AV e Vi
= NN, A/V/
o N S S
6.0 MM T~ S
' NN~~~ |~ ¥
AN~ 7
4.0 ——10.5 MV/m, 400 uA, 10 Hz 20 deg ~——
| ——10.5MV/m,300 uA, 10 Hz 20 deg
——10.5 MV/m, 200 uA, 10 Hz 20 deg
2.0 | ——105MV/m,100 uA, 10 Hz 20 deg
——105MV/m, 0uA, 10 Hz 20 deg
0.0 | | L L [T T
1.0 10.0 100.0
Qext (1076)

win
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Lorentz Detuning

Jefferdon Lab

Pressure deforms the cavity wall:

RF power produces radiation pressure:

H?-¢,E°
4 e
Outward pressure at the
equator
Inward pressure at
the iris

[} [l /

Deformation produces a frequency shift:
_ 2

Af =—k E_.

@SA Page 126 DOMINION
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Lorentz Detuning

— CEBAF 6 GeV

— CEBAF Upgrade

Energy Content (Normalized)

o
(==}

-1,000 -800 -600 -400 -200 0 200

Detuning (Hz)

£ iy
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Microphonics

* Total detuning
ow, + 0w,

where Jdw, is the static detuning (controllable)

and Jw_ is the random dynamic detuning (uncontrollable)

Probability Density
Medium p CM Prototype, Cavity #2, CW @ 6MV/m

10 400000 samples
8 l | M
6 ' 11 0.25
g 4
- 2 2 02 —
Z 2 o 015
/\
6 — -H ! 2 01
-8 I 1 T It |. 1 T g / \
-10 4 . o 005
90 95 100 105 110 115 120 J \
0 T T T T T T

Time (sec)

-8 -6 -4 -2 0 2 4 6 8
Peak Frequency Deviation (V)
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Ponderomotive Effects

« Adiabatic theorem applied to harmonic oscillators (Boltzmann-

Ehrenfest)
If g=i2d—w <1, then v is an adiabatic invariant to all orders
@ dt @
A(E)/(E) ~o(e™) = Ao _ AY (Slater)
@ @ w U

Quantum mechanical picture: the number of photons is constant: U = Naw
Mo g2y, o p2gp
U=]| dv|—H"(F)+—E“(F) | (energy content
jva (F)+ ()}( gy )
AU = dSA(F)-&(F) [%H 2(?)—%?(?)} (work done by radiation pressure)

win
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Ponderomotive Effects

O ,uo 2 (= _i 2 (=
ro  J881OE0) {TH (-, E (r)}

w0 Ho 200y, €0 p2re
jvde H*(F)+ 2 E (r)}

Q

Expand wall displacements and forces in normal modes of vibration
¢,(r) of the resonator

[ dsg,(eM)=0,

£(F)=.9,9,(F) 0, =] &(7) 9,(7) dS

F(F) =Y F,8,(F) F, = "S F(F) ¢,(F) dS

.{effégon Lab
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Ponderomotive Effects

Equation of motion of mechanical mode u

d dL dL oD
+

— =F L=T-U Euler-Lagrange
dtdq, dq, 9Jq, ° ( grange)
= lz‘cﬂqfl (elastic potential energy) c,: elastic constant
1 d,
T=EZCNQ—‘; (kinetic energy) Q : frequency
y7i
2
_2_—‘; (power loss) Tﬂ:decay time
,u
. Q)
4, +—0q, +Q,q, =—"F,
@ C

£ i
Orp
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Ponderomotive Effects

The frequency shift Aw, caused by the mechanical mode u is proportional to g,

.. 2 . 0,
AD +—Aw +Q*Aw =—-——2

1 1 u=%u
Ty Cu

= 2
(Uﬂ] QU =k Q2V*

Total frequency shift:  Aw(t) =) Aw,(t)
U
Static frequency shift: Aw, =) Aw,,=-V?> k,
7 7

Static Lorentz coefficient: k = Zk .
y

@56 i
Op
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Ponderomotive Effects — Mechanical Modes

L2
MG, + A0, +Q, A, =-QIK N, + )
U

Aw,=Aw, +o0,
V =V, (1+0V)

Linearized equation of motion for mechanical mode:

Fluctuations around steady state:

.. 2 ..
5(0# +T_5w’u + QﬁJCOﬂ = —ZijﬂVOZé'V
u

The mechanical mode is driven by fluctuations in the electromagnetic mode
amplitude.

Variations in the mechanical mode amplitude causes a variation of the
electromagnetic mode frequency, which can cause a variation of its amplitude.

—Closed feedback system between electromagnetic and mechanical modes,
that can lead to instabilities.

win
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Lorentz Transfer Function

.o 2 . 2 2 2
00, +—ow, +Q, 00, = -2 K V"6V

Tﬂ
902 2
0
o, (w) = A ov(w)
QZ 2 2 -
, —O° |+ — 1w
T,U
°E 30
S
=
< 20
TEM-class cavities T
ANL, single-spoke, 354 MHz, $=0.4 2 10
2
&
o

o
T
N
o
o

simple spectrum with
few modes

Ry
o
o

o
(s@aiba() aseyd v

1 I 1 I 1 I 1 I 1
0 200 400 600 800 1000

Vibration frequency (Hz)

£ iy
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Lorentz Transfer Function

TM-class cavities (Jlab, 6-cell elliptical, 805 MHz, 3=0.61)
Rich frequency spectrum from low to high frequencies
Large variations between cavities

SNS Med B Cryomodule 3, Cavity Position 1, Lorentz Transfer Function
(5MV/m CW)

g

m = 315

-+ 270

/ 1
L\W /" 1 /A Ly 190

L~
“‘1'0"‘”\ i STV
i \ N | T 135

Ratlo (dB)
8% 8 58 & 8 &

—_—

=

Relatlve Phase (deg)

Cavity Detuning, Response

N
(&)

120 180 240 300 360 420
AM Drive Frequency (Hz)

o
g

win
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GDR and SEL

M.

®

Phase
0.

D

Controller

Amplitude

Controller _ Klystron

K

Phase —l
Setpointi™ @ GDR
Phase Gradient Detector
Detector .
radient :“:
et Point Cavity
a)
Phase Amplitude
Limiter Controller CoRtroIIer Klystron
—I= D A
SEL

Zlq- Loop Phase

Gradient Detector
Gradient
Set Point

M.O.

.{effé20n Lab

- =(00D=

Setpoint

@ &

Cavity
Phase b)
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Generator-Driven Resonator

* In a generator-driven resonator the coupling between the
electromagnetic and mechanical modes can lead to two
ponderomotive instabilities

* Monotonic instability : Jump phenomenon where the
amplitudes of the electromagnetic and mechanical modes
increase or decrease exponentially until limited by non-linear
effects

« Oscillatory instability : The amplitudes of both modes oscillate
and increase at an exponential rate until limited by non-linear
effects

win
—
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Self-Excited Loop-Principle of Stabilization

Controlling the external phase shift 4 can cc
fluctuations in the cavity frequency @, so the
external frequency reference w..

CZJE

W=, + tan 6,

Instead of introducing an additional external

this is usually done by adding a signal in quadrature

i‘ E Amplifier

-+

U Phase
Resona tor Shifter
(e,)

Attenuators

" -

— The cavity field amplitude is unaffected by the phase stabilization

even in the absence of amplitude feedback.

@M Page 138
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Self-Excited Loop

» Resonators operated in self-excited loops in the absence
of feedback are free of ponderomotive instabilities. An
SEL is equivalent to the ideal VCO.

— Amplitude is stable
— Frequency of the loop tracks the frequency of the cavity

* Phase stabilization can reintroduce instabilities, but they
are easily controlled with small amount of amplitude
feedback

win
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Input-Output Variables

* Generator - driven cavity

N
rd F il

Generator amplitude (V,) ’l

Field amplitude (V,)

| Ponderomotive

Detuning (o - o) | T T

v

_ effects

« Cavity in a self-excited loop

Limiter output (V,)

Loop phase shift (6))

Cavity phase shift 6)

Field amplitude (V,)

Pondermotive
\ gffects

@M Page 140
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Lorentz Detuning

During transient operation (rise time and decay time) the loop
frequency automatically tracts the resonator frequency. Lorentz
detuning has no effect and is automatically compensated

Amplitude (Norm.)

s

(=2}
(3,
A
& T
N
=
o
-
N

Detuning (Norm.)

i
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Microphonics

« Microphonics: changes in frequency caused by
connections to the external world
— Vibrations
— Pressure fluctuations

When phase and amplitude feedbacks are
active, ponderomotive effects can change the
response to external disturbances

2

.o . 2 2 2
06, +— 0w, +Q, 0w, = —-2Q K V,°6V+n(t)

Ty

win
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Microphonics

Two extreme classes of driving terms:

 Deterministic, monochromatic
— Constant, well defined frequency
— Constant amplitude

e Stochastic

— Broadband (compared to bandwidth of mechanical
mode)

— Will be modeled by gaussian stationary white noise
process
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Microphonics (probability density)

(Y1)
(1)
8 11174
g 006
S
B oM
Soms
1
1]
[N
(1]
0

.{effézon Lab

Single gaussian

Noise driven

SHS M2, CAVITY 3IBACKEROUND MCROPHONICS HISTOGRAM

SidDev=22Hr

805 MHz TM

Prokeblllty of Gesurramce

Bimodal

Single-frequency driven

SMS ME3, CAVIT Y 1 BACKGROUND MBCROPH (MIC 5 HISTOGRARM

..
.
.
RS

8
a
'a ]
L]
L]
L]

805 MHz TM
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Multi-gaussian

Non-stationary noise

10 E T T T T T ?
u ® E,.= 8MVm |3
5 — Fit i
x E,..=02MVim
10°F — F E
- Opus=1-6 Hz 3
10°F E
2 N &
10°F - * 3
- L) 3
i 4 % ]
1 L. d L
1020 10 0 10 20
A frequency (Hz)
172 MHz TEM
Ov
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Microphonics (frequency spectrum)

TM-class cavities (JLab, 6-cell TEM-class cavities (ANL, single-spoke,
elliptical, 805 MHz, 3=0.61) 354 MHz, 3=0.4)
Rich frequency spectrum from Dominated by low frequency (<10 Hz)
low to high frequencies from pressure fluctuations
Large variations between Few high frequency mechanical
cavities modes that contribute little to
microphonics level.
S LN LT L R Y D R L I
SN S M02, Cavity 3, Bkgnd Microphonics Spectrum, 1W _ 0.8 -
e z 595 Hz
Z o6l o
‘g 1.E+00 0:'1
g 1E-01 MWHUM%MWM Nﬁﬁvﬂﬁ EJ;'J-
é 1E-02 W AMNMWWW %
@ o

0 60 120 180 240 300 360 & 100 200 300 400 500 500 700 800 900 1000
Frequency (Hz) Vibration Frequency (Hz)
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Probability Density (histogram)

Single frequency, constant amplitude

p(Sw)

.geffézon Lab

n(t)

>

Gy,

O oy
—

Harmonic oscillator (Q2 ,t,) driven by:

1.5 1 ‘
1_
0.5 A
-12 -1 -08 -06 04 -02 0 02 04 06 08 1 12
S®[B®

75\/ ow’. —Ow’
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White noise, gaussian

p(dw)

T T T T T L) T T T T T
3 25 2 415 1 05 0 05 1 1.5 2 25 3
dw/d®

p(60) = ——




Autocorrelation Function
R, (7) = (x({) x(t +7)) = lim % jOT X(t) X(t+7) dt

Harmonic oscillator (2,7 ) driven by:
Single frequency, constant amplitude White noise, gaussian

TN,

c_""o_'
=
<]
=
Sl

o

<

<

<

8<

—‘T/rﬂ‘

Rso () _ cos(w, ) r,, (7) = (0 cos(Q,7)e

@56 iy
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Stationary Stochastic Processes

X(t): stationary random variable

1T
Autocorrelation function: R, (7) = (x(1) x(t +7)) = !'LQ?L X(t) x(t +7) dt

Spectral Density S (®m): Amount of power between ® and dw

S,(w) and R,(t) are related through the Fourier Transform (Wiener-Khintchine)

S, (@) = % [ R(r)e™dr R(7)=] S,(w)e”da

Mean square value: )
(X)=R (0)=] S,(»)do

@56 i
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Stationary Stochastic Processes

For a stationary random process driving a linear
system

X(t) > T(iw) > y(t)

(y?) =R, (O)=I8y(a)) do (x)=R (o):zsx (0) do

7) | R,(r)]:auto correlation function of y(t) [x(t)]
S,(®) |[S,(w)]:spectral density of y(t) [x(t)]

S, (@) = S, (@) [T (iw)|

(y*)= js )[T (iw)| do

@56 i
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Performance of Control System

Residual phase and amplitude errors caused by

microphonics

Can also be done for beam current amplitude and phase

fluctuations

Assume a single mechanical oscillator of frequency €2, and decay time 7,

excited by white noise of spectral density A*

—>

Gy

n(t) S® oy
s G :

Ll
G,

> Of
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Performance of Control System

N N do T
<ow? >= AZJ|Gﬂ (i0)) do = AZJ , 2 P = A5
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Probability Density
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Probability density

The Real World
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Piezo control of microphonics

MSU, 6-cell elliptical 805 MHz, =0.49

Adaptive feedforward compensation
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Figure 2. Active damping of helium oscillations at 2K. Figure 3. Active damping of external vibration at 2K.
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Piezo Control of Microphonics

.geffézon Lab

Resonant Freq. Dev.

FNAL, 3-cell 3.9 GHz
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SEL and GDR

« SEL are best suited for high gradient, high-
loaded Q cavities operated cw.

— Well behaved with respect to ponderomotive instabilities
— Unaffected by Lorentz detuning at power up

— Able to run independently of external rf source

— Rise time can be random and slow (starts from noise)

 GDR are best suited for low-Q cavities operated
for short pulse length.

— Fast predictable rise time
— Power up can be hampered by Lorentz detuning
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TESLA Control System
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Basic LLRF Block Diagram
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Low level rf control development
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Pulsed Operation

* Under pulsed operation Lorentz detuning can
have a complicated dynamic behavior

Cavity Pos. 3, Pulsed Power Response Lorentz Force Detuning of D39 in Chechia
60Hz, 1.3ms, 12.7MV/m S B : '
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Fig. 2: Lorentz force detuning measured for a TESLA
cavity at different gradients.
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Pulsed Operation

» Fast piezoelectric tuners can be used to compensate the

dynamic Lorentz detuning

Cavily # 2 @ 10 MVim, with and without piezo

compensation
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