Room Temperature rf High Gradients: Physics, rf design and Technology When Maxwell's equations just aren't enough

Part III: Breakdown in rf structures and design for high accelerating gradient

W. Wuensch

Fifth International Linear Collider School

Overview of high-gradient rf behavior

W. Wuensch

Fifth International Linear Collider School

From breakdown theory to rf cavities

OK, we have a picture of the physics of breakdown.

Now we're going to look specifically at the issues of breakdown in an rf cavity – that's why we're here.

First we will address:

- What does a high-power rf test look like?
- What happens when an rf structure breaks down?

Then we will address how the cavity design can influence the structure performance.

Finally just a few words about the technology of high-gradient rf structures.

W. Wuensch

What does a high-power rf test look like? What happens when an rf structure breaks down?

W. Wuensch

Fifth International Linear Collider School

W. Wuensch

Fifth International Linear Collider School

The basic layout of an rf test

Waveguide

W. Wuensch

Fifth International Linear Collider School

51+52 Normal pulse #36

Last pulse Last pulse but one Difference between the two Dashed lines = Analysis threshold F RsX10 Tr

FC-UP FC-Mid Threshold

T. Higo, KEK Test of TD18 structure

51+52 typical BD pulses #72 Reflected RF back from klystron again

T. Higo, KEK Test of TD18 structure

1: TW

Breakdown Waveforms of TD18

High Power Operation History

Conditioning history

TD18_Disk_#2 BDR evolution

TD18_Disk_#2_BDR evolution

The most important dependencies: gradient, pulse length, geometry, running time (and frequency but not today)

W. Wuensch

Fifth International Linear Collider School

CERN/KEK/SLAC T18 structure tests

W. Wuensch

BDR versus Gradient scaling

BDR versus Gradient in Cu structures (power fit)

Power fit can be done with the same power for all gradients

CLIC

Alexej Grudiev, New RF Constraint.

Gradient versus pulse length scaling CLIC Gradient versus pulse length at BDR=10⁻⁶ $E \cdot t^{1/6}$ = const 120 T53VG3MC $v = 236.92x^{-0.144}$ 100 H90VG3 y = 220.55x $y = 264.8x^{-0.203}$ average gradient [MV/m] H75VG4S18 H60VG4R17-2 364.73x^{-0.26} 80 HDX11-Cu $y = 182.05x^{-0.173}$ $y = 150.24x^{-0.147}$ 2pi/3 60 + HDS60L $v = 114.03x^{-0.157}$ T18vg2.6, 900hrs -Power (T53VG3MC) 40 $y = 96.223x^{-0.179}$ -Power (H90VG3) Power (H75VG4S18) 20 Power (H60VG4R17-2) Power (HDX11-Cu) -Power (2pi/3) 0 Power (HDS60L) 100 200 300 400 500 0 -Power (T18vg2.6, 900hrs) pulse length [ns]

N.B. This is very well known scaling law being confirmed again and again

Gradient and pulse length dependencies in KEK tests

Breakdown rate data from single cell standing-wave cavity tests at SLAC

1C-SW-A2.75-T2.0-Cu-SLAC-#1

V. Dolgashev, SLAC

- In a Cu structure, ultimate gradient E_a can be scaled to certain BDR and pulse length using above power law. It has been used in the following analysis of the data.
- The aim of this analysis is to find a field quantity X which is geometry independent and can be scaled among all Cu structures.

Quantifying geometrical dependence of high-power performance

W. Wuensch

Fifth International Linear Collider School

Importance of geometric dependence - motivation

As you have seen in Daniel's, Erk's and Alexej's presentations, there is a strong interplay between the rf design of accelerating structures and the overall performance of the collider.

One of the strongest dependencies is emittance growth as function of the average iris aperture which acts through transverse wakefields.

The iris aperture also influences required peak power and efficiency through its effect on group velocity.

But crucially the iris aperture has an extremely strong influence on achievable accelerating gradient.

Very generally, we expect that the gradient of an rf structure should be calculable from its geometry if material and preparation are specified.

W. Wuensch

The big questions

Where does such a geometrical dependency come from?

Can we quantify the dependence of achievable accelerating gradient on the geometry?

Trying to understand, derive and quantify geometrical dependence has been a significant effort because an essential element of the overall design and optimization of the collider.

W. Wuensch

The basic approach

The basic element is to express our high-power limits as a function of the unperturbed fields inside our structures – like the electric field limit in dc spark.

So first we are going to make sure that we have a feel for how those fields vary as a function of geometry.

We use a specific example of iris variation for a fixed phase advance in a travelling wave structure.

W. Wuensch

Field distribution

- Simulation in HFSS12
- Field values are normalized to accelerating gradient, E_{acc} =100MV/m
- Frequency: 11.424GHz
- Phase advance per cell: 120 degree
- Iris radius: 3mm
- *v_g /c*= 1.35%

Parameters v.s. iris

Overview of how different types of structures behave – from accelerating structures to PETS

W. Wuensch

Fifth International Linear Collider School

Achieving high gradients has been a high profile concern for CLIC and NLC/JLC since roughly 2000. Here are the target specifications we have had:

	frequency [GHz]	Average loaded gradient [MV/m]	Input (output for PETS) power [MW]	Full pulse length [ns]
NLC/JLC	11.424	50	55	400
CLIC pre-2007				
Accelerating	29.928	150	150	70
PETS	29.985	-5.7	642	70
CLIC post 2007				
Accelerating	11.994	100	64	240
PETS	11.994	-6.3	136	240

W. Wuensch

Fifth International Linear Collider School

Trying to achieve these specifications has resulted in the test of many structures of diverse rf design over the years.

The preparation and testing conditions of the test structures which were built were not always the same – these processes also evolved over the period the structures were being developed.

But the wide variety of structure geometries were tested under reasonably similar conditions.

So we have used this unique set of data to try to understand and then quantify the geometrical dependency of gradient.

W. Wuensch

List of structures from CLIC and NLC/JLC testing programs

number	RF design name	f [GHz]	dphi [deg]	a1 [mm]	vg1 [%]	
1	DDS1	11.424	1	120	5.7	11.7	
2	T53VG5R	11.424	ļ	120	4.45	5	
3	T53VG3MC	11.424	1	120	3.9	3.3	
4	H90VG3	11.424	1	150	5.3	3	
5	H60VG3	11.424	1	150	5.3	2.8	
6	H60VG3R18	11.424	ļ	150	5.5	3.3	
7	H60VG3R17	11.424	1	150	5.3	3.6	
8	H75VG4R18	11.424	ļ	150	5.3	4	
9	H60VG4R17	11.424	1	150	5.68	4.5	
10	HDX11-Cu	11.424	1	60	4.21	5.1	
11	CLIC-X-band	11.424	ļ	120	3	1.1	
12	T18VG2.6-In	11.424	ļ	120	4.06	2.6	
13	T18VG2.6-Out	11.424	1	120	2.66	1.03	
14	T18VG2.6-Rev	11.424	1	120	2.66	1.03	
15	T26VG3-In	11.424	1	120	3.9	3.3	
16	T26VG3-Out	11.424	1	120	3.2	1.65	
17	TD18_KEK_In	11.424	1	120	4.06	2.4	
18	TD18_KEK_Out	11.424	ļ	120	2.66	0.9	
19	SW20A3p75	11.424	ļ	180	3.75	0	Т
20	SW1A5p65T4p6	11.424	ļ	180	5.65	0	L
21	SW1A3p75T2p6	11.424	ļ	180	3.75	0	L
22	SW1A3p75T1p66	11.424	ļ	180	3.75	0	L
23	2pi/3	29.985	5	120	1.75	4.7	Т
24	pi/2	29.985	5	90	2	7.4	L
25	HDS60-In	29.985	5	60	1.9	8	L
26	HDS60-Out	29.985	5	60	1.6	5.1	L
27	HDS60-Rev	29.985	5	60	1.6	5.1	L
28	HDS4Th	29.985	5	150	1.75	2.6	L
29	HDS4Th	29.985	5	150	1.75	2.6	
30	PETS9mm	29.985	5	120	4.5	39.8	

All high-power test data will be normalized to: 200 ns pulse length and 1x10⁻⁶ 1/pulse breakdown rate

Standing wave

30 GHz

W. Wuensch

Fifth International Linear Collider School

Quantitative comparison of selected parameters

W. Wuensch

Fifth International Linear Collider School

Objective first – accelerating gradient

W. Wuensch

Fifth International Linear Collider School

Most obvious – surface electric field

W. Wuensch

Fifth International Linear Collider School

How about power flow?

High-power scaling laws: P/C and S_c

W. Wuensch

Fifth International Linear Collider School

Let's consider the very simple idea that larger structures can carry more power.

A couple of physical arguments to justify a limit based on power "density" are,

- A certain level of power is needed to grow and sustain a breakdown. All those emitted and accelerated electrons, ionized atoms require power to produce and support.
- 2. The surface modification created by the breakdown could very well be related to the power available. More power rougher surface after breakdown breakdown at lower surface electric field. All structures we see go through a conditioning process so the breakdown rate is influenced by the history.

W. Wuensch

Now comes a very messy, non-idealized, exercise in phenomenology...

We ignore standing wave cavities for the time being.

We'll decide which dimension to scale the power through intuition, guess work and by looking how the data fit.

After some tries, P divided by inner-iris circumference – the smallest constriction in the structure works pretty well.

But our data shows that frequency scaling geometries gives approximately fixed gradient, so we throw in the frequency to give:

 $Pf / C \propto const$

W. Wuensch

Fifth International Linear Collider School

 $Pf / C \propto const$

W. Wuensch

Fifth International Linear Collider School

Pf/C is certainly not the whole truth. Standing wave cavities are not described correctly and the frequency (in)dependence had to be put in by hand. Plus the rule is just phenomenological.

Still *Pf/C* is sufficiently compelling that it has become one of the design criteria for CLIC main linac structures- accelerating and PETS.

But can we get closer, and *derive*, the real dependence?

Remember, the data were taken with structures with somewhat different preparation techniques and testing conditions. Plus at some level there will be residual structure-to-structure variation in performance so fitting to existing data has its limits.

So our approach has to come from the theoretical side. We will try to apply some of the ideas from section II more closely now.

W. Wuensch

Basic concepts behind a better highgradient limit

- 1. Make it a local quantity that way frequency independence of fixed geometry is automatic.
- 2. Generalize to complex power flow to include standing wave cavities.
- 3. Base the power flow based limit on physics of breakdown specifically on the ability of rf fields to feed field emission.

Qualitative picture

- Field emission currents J_{FN} heat a (potential) breakdown site up to a temperature rise ΔT on each pulse.
- After a number of pulses the site got modified so that J_{FN} increases so that ΔT increases above a certain threshold.
- Breakdown takes place.

This scenario can explain:

- Dependence of the breakdown rate on the gradient (Fatigue)
- Pulse length dependence of the gradient (1D÷3D heat flow from a point-like source)

There are two regimes depending on the level of rf power flow

- 1. If the rf power flow dominates, the electric field remains unperturbed by the field emission currents and heating is limited by the rf power flow (We are in this regime)
- If power flow associated with field emission current P_{FN} dominates, the electric field is reduced due to "beam loading" thus limiting field emission and heating

Field emission and power flow

What matters for the breakdown is the amount of rf power coupled to the field emission power flow.

Field emission and rf power coupling

$$P_{coup} = \int_{0}^{T/4} \frac{P_{rf}}{P_{rf}} \cdot P_{FN} dt \left| \int_{0}^{T/4} \frac{T/4}{P_{FN}} dt \cdot \int_{0}^{T/4} P_{rf} dt \right|$$
$$= C^{TW} E_{0} H_{0}^{TW} + C^{SW} E_{0} H_{0}^{SW}$$

Assuming that all breakdown sites have the same geometrical parameters the breakdown limit can be expressed in terms of modified Poynting vector S_c .

$$S_{c} = E_{0}H_{0}^{TW} + \frac{C^{SW}}{C^{TW}}E_{0}H_{0}^{SW} = \operatorname{Re}\left\{\mathbf{S}\right\} + g_{c}\cdot\operatorname{Im}\left\{\mathbf{S}\right\}$$

Alexej Grudiev, New RF Constraint.

Field emission and rf power coupling

Constant g_c depends only on the value of the local surface electric field βE_0

CLIC

$$g_{c} = \frac{\int_{0}^{\pi/2} \sin^{4} x \cos x \cdot \exp\left(\frac{-62 \ GV \ /m}{\beta E_{0} \sin x}\right) dx}{\int_{0}^{\pi/2} \sin^{5} x \cdot \exp\left(\frac{-62 \ GV \ /m}{\beta E_{0} \sin x}\right) dx}$$

g_c is in the range: from 0.15 to 0.2 CERN

Analytical estimates for a cylindrical tip

For a cylindrical protrusion heat conduction is described by:

C L I C

Williams & Williams, J. Appl. Rhys. D, 5 (1972) 280

$$C_{V} \frac{\partial T}{\partial t} = K \frac{\partial^{2} T}{\partial x^{2}} + J^{2} \rho$$

Let's get approximate solution it in two steps:

- 1. Solve it in steady-state (i.e. left hand side is zero) for a threshold current density required to reach melting temperature T_m
- 2. Solve time dependent equation in linear approximation to get the threshold time required to reach melting temperature

Analytical estimates for a cylindrical tip

Case B: Resistivity is temperature-dependent: $\rho = \rho_0 \cdot T/T_0$ (Bloch-Grüneisen)

Step 1:

$$K \frac{\partial^2 T}{\partial x^2} + J^2 \rho = 0; \quad T \Big|_{x=h} = T_0; \quad T \Big|_{x=0} = T_m; \quad \frac{\partial T}{\partial x} \Big|_{x=0} = 0$$

$$T = T_m \cos \sqrt{\frac{J^2 \rho_0}{KT_0}} x; \quad J_m^{\rho 1} = \sqrt{\frac{KT_0}{h^2 \rho_0}} \arccos \frac{T_0}{T_m}$$

Step 2:

......

CLIC

$$C_{V} \frac{\partial T}{\partial t} = J^{2} \rho; \quad T \Big|_{t=0} = T_{0}; \quad T \Big|_{t=t_{m}} = T_{m}$$

$$T = T_{0} \exp \frac{J^{2} \rho_{0}}{C_{V} T_{0}} t; \quad \tau_{m}^{\rho 1} = \frac{C_{V} T_{0}}{J^{2} \rho_{0}} \ln \frac{T_{m}}{T_{0}} = \frac{C_{V}}{K} h^{2} \ln \frac{T_{m}}{T_{0}} / \arccos^{2} \frac{T_{0}}{T_{m}}$$

Fundamental constants for copper			
Thermal conductivity: K [W/m·K]	400		
Volumetric heat capacity: C _V [MJ/m ³ ·K]	3.45		
Resistivity@300K: $\rho_0 [n\Omega \cdot m]$	17		
Melting temperature: T _m [K]	1358		

Some numbers for Case B: $\rho = \rho_0 \cdot T/T_0$

Alexej Grudiev, New RF Constraint.

W. Wuensch

Fifth International Linear Collider School

Sc and P/C as criteria

P: the power flow, C: the circumference of the iris

Sc6: modified poynting vector *Real(Poynting)+Imag(Poynting)/6*^[1]

The value sqrt(f*P/C)=6 sqrt(GHz*MW/mm) and sqrt(Sc6)=2 sqrt(MW)/mm are based on some high power test results [1]

To conclude:

I would now like to review a few selected slides from my plenary talk during ILWS2010, emphasizing the connections with these lectures.

W. Wuensch

Fifth International Linear Collider School

Accelerating structures – specifications

High-gradient:

- 1. 100 MV/m loaded gradient
- 2. 170 (flat top)/240 (full) ns pulse length
- 3. $<4x10^{-7}$ 1/pulse/m breakdown rate

Beam dynamics:

- 1. 5.8 mm diameter minimum average aperture (short range transverse wake)
- < 1 V/pC/mm/m long-range transverse wakefield at second bunch (approximately x100 suppression).

Accelerating structures – features

IWLC2010

Walter Wuensch

IWLC2010

Accelerating structures – manufacture

Diffusion Bonding of T18_vg2.4_DISC

Pressure: 60 PSI (60 LB for this structure disks) Holding for 1 hour at 1020°C

Vacuum Baking of T18_vg2.4_DISC

650° C 10 days

Walter Wuensch

Our baseline treatment for high-gradient was developed by the NLC/JLC program.

Our current understanding of *why exactly* it works comes from our ongoing breakdown physics study. Crystal dislocations appear to be the cause of our gradient limit (ok, there is still a debate!).

- **1. Etching** –Etching occurs preferentially at dislocations due to lower local work function. This is particularly important for milled surfaces, which have significant induced stress and consequently high dislocation density. Also removes particles.
- 1050 °C hydrogen fire Near melting point results in significant annealing. Relieves stresses and reduces dislocation density. Excellent removal of chemical contaminants.

Walter Wuensch

Summary of CLIC accelerating structure test results

Structure type	Fabrication	Test location	Total testing time [hr]	Unloaded gradient [MV/m]	Flat top pulse length [ns]	Breakdown rate [1/pulse/meter]
T18	KEK/SLAC	SLAC	1400	105	230	1.6x10 ⁻⁶
T18	KEK/SLAC	KEK	3900	102	252	8x10 ⁻⁷
T18	KEK/SLAC	SLAC	280	110	230	7.7x10 ⁻⁵
T18	CERN	SLAC	550	90	230	1.3x10 ⁻⁶
TD18	KEK/SLAC	SLAC	1300	85 (a)	230	2.4x10 ⁻⁶
				100 (b)	230	7.6x10 ⁻⁵
TD18	KEK/SLAC	КЕК	3200	87 (a)	252	2x10 ⁻⁶
				102 (b)	252	1.4x10 ⁻⁵
T24	KEK/SLAC	SLAC	200	92	200	9.8x10 ⁻⁵
TD24	CERN	TBTS	<1 (0.8Hz)	55	≈ 100	O(10 ⁻²)

conditioning continues (a) BDR specification run (b) gradient specification runIWLC2010Walter Wuensch19 0

Synthesis of accelerating structure test results scaled to CLIC breakdown rate

Scaling to CLIC conditions: Scaled from lowest measured BDR to $BDR=4*10^{-7}$ and $\tau=180$ ns (CLIC flat-top is 170 ns), using standard $E^{29}\tau^5/BDR=$ const. Correction to compensate for beam loading not included – expected to be less than about 7%. WLC2010 Walter Wuensch 19 October 2010

Breakdown rate evolution with extended running

TD18_Disk_#2_BDR evolution

TD18 test at KEK

IWLC2010

Walter Wuensch