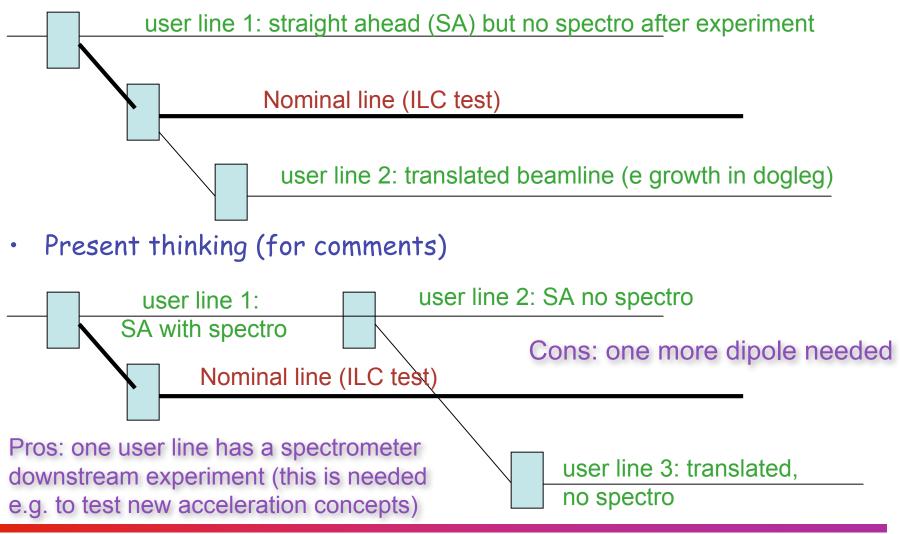

Zeroth order lattice design for the linac + high energy line -- for comments ! --

P. Piot, 03/31/2010

lattice version: V03242010

Requirements/Choices


- Injector:
 - Already discussed see talk of FEB 23 2010,
 - 3 matching points: BC1, TDC, and CRYO1 entrance.
- Post crymodules area (assume 2 modules for now):
 - Choose to locate a permanent line at Z=99.98 m from PC
 - This would be permanent
 - It would include the "nominal" spectrometer line.
 - Choose to reserve 2 empty spaces* to accommodate quick installation of CRYO3 and CRYO4 without major alterations of optics design
 - Assume CRYO4 will not be attached to CRYO3 but would be located downstream of a second stage bunch compressor (to be designed)

*the empty spaces could temporally accommodate instrumentation and associated optics

Comment: HE dispersive lines configurations

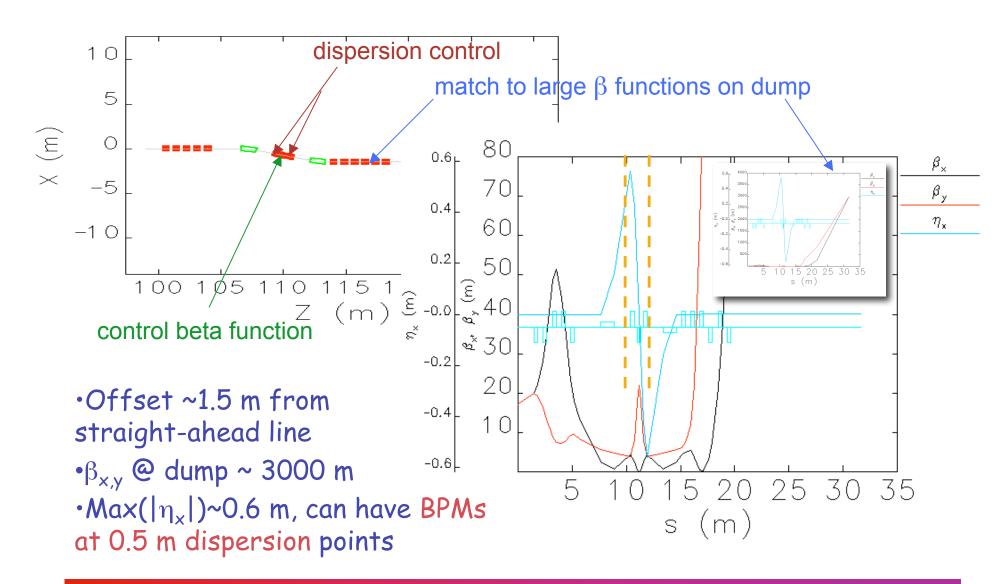
• Design of 2007

HE Nominal line: Mike's design

Lattice Functions

(spectrometer line from d.s end of 2nd CM to dump) 200 0.8 betaX [m] DispX [m] 0.6 betaY [m] ~0.5 m 0.4 150 0.2 beta [m] DispX [m] 100 0 ο 0 0 Т Т 0 -0.2 Ŧ т R R 50 -0.4 -0.6 dipole dipole 0 -0.8 4 8 12 0 16 z [m] Initial lattice functions: $\beta_{0x}=20, \alpha_{0x}=-2.0, \beta_{0y}=30, \alpha_{0y}=-3.0$ Beam energy = 570 MeV (2 cryomodules @ 31MV/m) Max beta = 140m (except near dump) Beta @ Be dump window = 3000m

NML Downstream Beamline Layout - M Church 8/23/07

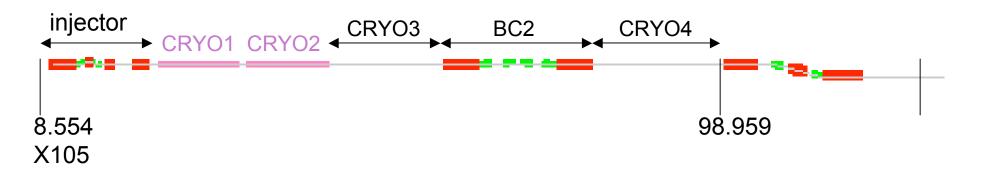

P. Piot, 03/31/2010 -- Beam Physics mtg -- NML

4

HE Nominal line: design consideration

- Use same approach:
 - Introduce a dispersion bumps in the dogleg only, i.e. between the dipole
 - Downstream of the two dipoles dispersion is suppressed (to 1st order)
 - A set of quadrupole is used to transport the beam and blow the beam envelope in on the dump window (rms beam size larger than 3 mm at 2.08 m downstream of the dump face).
- "Symmetrize" the dogleg design
 - Dogleg: two dipoles with three quadrupoles,
 - two high-dispersion points (with opposite dispersion value -helpful? Not sure yet)

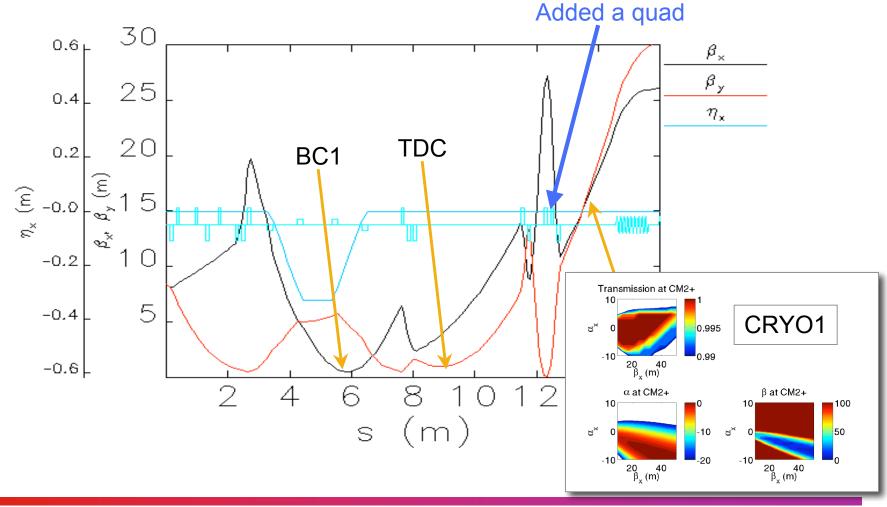
HE Nominal line: optical functions


HE Nominal line: anticipated performances

- High-dispersion points have 30 $-\beta_x = 4.385 \text{ m}$ $-\eta_x = 0.559 \text{ m}$ $\widehat{\mathbb{E}}$ 20 • This implies: \mathfrak{v}^{\times} 10 $-\mathfrak{v}^{\times}$ 10
 - An energy spread $0^{-10^{-4}}$ (for $\varepsilon = 10 \ \mu m$) $\delta^{-10^{-4}}$ (for $\varepsilon = 10 \ \mu m$) $\delta^{-10^{-4}}$ (for $\varepsilon = 10 \ \mu m$) $\delta^{-10^{-4}}$ (for $\varepsilon = 10 \ \mu m$) $\delta^{-10^{-4}}$ (for $\varepsilon = 10 \ \mu m$) $\delta^{-10^{-4}}$ (for $\varepsilon = 10 \ \mu m$) $\delta^{-10^{-4}}$ (for $\varepsilon = 10 \ \mu m$) $\delta^{-10^{-4}}$ (for $\varepsilon = 10 \ \mu m$) $\delta^{-10^{-4}}$ (for $\varepsilon = 10 \ \mu m$) $\delta^{-10^{-4}}$ (for $\varepsilon = 10 \ \mu m$) $\delta^{-10^{-4}}$ (for $\varepsilon = 10 \ \mu m$) $\delta^{-10^{-4}}$ (for $\varepsilon = 10 \ \mu m$) $\delta^{-10^{-4}}$ (for $\varepsilon = 10 \ \mu m$) $\delta^{-10^{-4}}$ (for $\varepsilon = 10 \ \mu m$) $\delta^{-10^{-4}}$ (for $\varepsilon = 10 \ \mu m$) $\delta^{-10^{-4}}$ (for $\varepsilon = 10 \ \mu m$) $\delta^{-10^{-4}}$ (for $\varepsilon = 10 \ \mu m$) $\delta^{-10^{-4}}$ (for $\varepsilon = 10 \ \mu m$) $\delta^{-10^{-4}}$
 - Not sure about energy resolution. Assuming a 100 μ m (bad?) BPM resolution, we get $\Delta\delta{\sim}10^{-4}/0.56{=}2{\times}10^{-4}$ is this sufficient? (What about BPM resolution?)
 - A maximum tolerable energy spread of 2.5 % assuming a 2" diameter beam pipe (and taking 4σ to fit in 2").

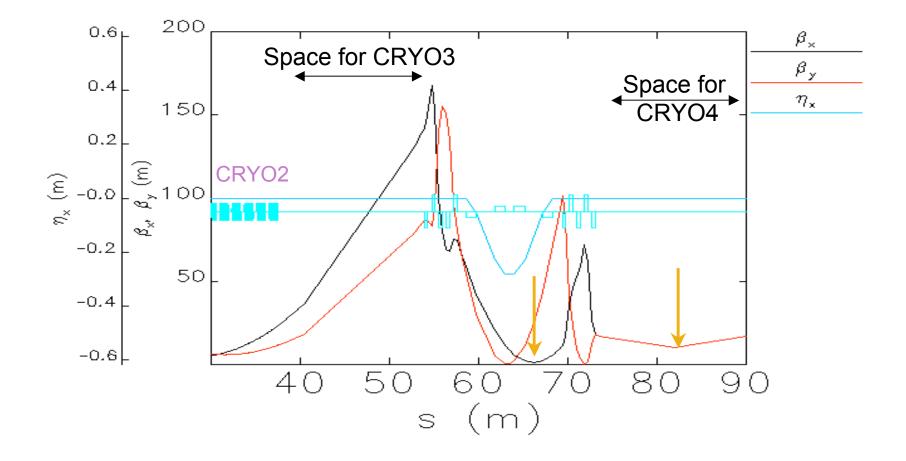
500 MeV

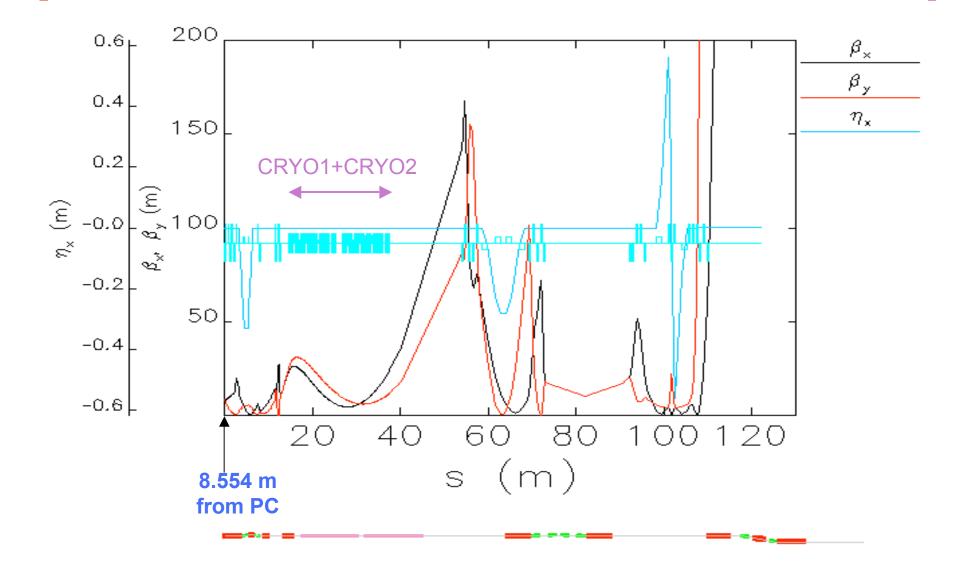
X105-to-dump optics


X105 to dump lattice shown below (only nominal HE disp line shown)

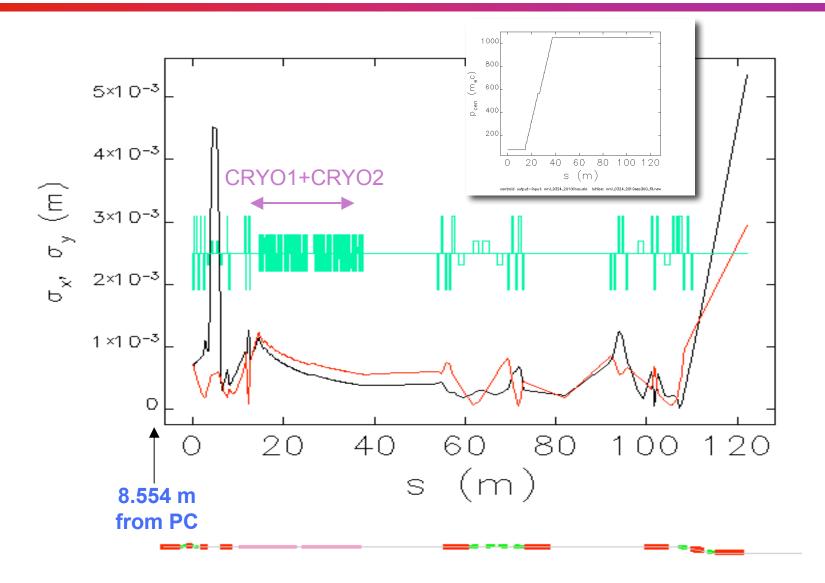
- Currently configuration includes:
 - Two cryomodules (CRYO1 an CRYO2),
 - An empty space for CRYO3,
 - A possible 2nd bunch compressor stage (BC2) not yet designed/optimized,
 - An empty space for CRYO4.

X105 to CRYO1


• Make a defocusing beam at CRYO1 entrance to "bit" strong rf focusing.


P. Piot, 03/31/2010 -- Beam Physics mtg -- NML

CRYO1 exit to CRYO4 space: SEC300


• Matching in BC2 compressor + a matching point in CRYO4 area.

X105 to dump optics (summary)

X105 to dump: 1st ELEGANT tracking

Summary & Next Steps

- 1st order optics in place
 - Need to prove BC2 is viable and optimize the compression scheme [LiTrack studies started (Chris P.)]
- In parallel need to explore/investigate require CS parameters at the BC chicanes (local CSRTrack version running -- now trying to get it up on the FermiGrid)
- Also exploring possible use of GlueTrack (high level python interpreter to "glue" different simulation codes -- nominally Astra and CSRTrack) to perform S2E simulation. [GlueTrack was kindly provided by Igor Zagorodnov from DESY]
- The latter step will enable full optimization of NML for the numerous possible operating scenarii.