

-A Satellite Workshop at IPAC-2010 Superconducting RF Cavity Technology
and Industrialization

Industrialization Study with Japanese Industries

Eiji Kako (KEK)

in cooperation with Japanese Industries

IPAC-2010 Satellite Workshop, Kyoto, May 23, 2010

Outline

- Introduction
 - Industrial models assumed for the ILC SCRF cavities
- Industrialization Study in cooperation with Japanese Industries
 - Manufacturing process and facilities required
 - Industrial engineering examples

A Model for Industrialization

- A model for 9-cell cavity productions
 - 15,764 + spare + production back-up (~ 10%)
 - $\rightarrow \sim 18,000$ cavities / $4\sim5$ years
- Possible models for manufacturing
 - Single consortium/vendor
 - Three regional consortiums/vendors
 - Six (or more) consortiums/vendors
 - < 3,000 > cavities / vendor
 - <3 > cavities / day / vendor
 (assuming 5 years and 200 days/year)

Industrialization Study in Japan

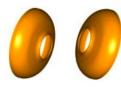
 KEK started the ILC industrialization study in cooperation with Japanese Industries

KEK:

Provides process models and required times

Industries:

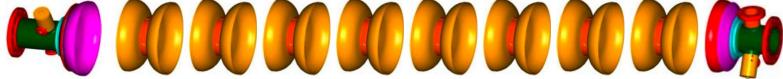
- Study manufacturing model and facilities required, and
- Report examples of industrialization experiences as references for further studies

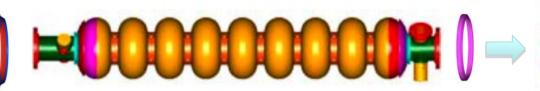

Standard process selected in cavity production and the yield

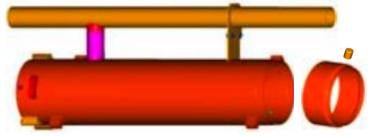
	Standard Cavity Recipe
Fabrication	Nb-sheet (Fine Grain)
	Component preparation
	Cavity assembly w/ EBW (w/ experienced venders)
Process	1 st (Bulk) Electro-polishing (~150um)
	Ultrasonic degreasing with detergent, or ethanol rinse
	High-pressure pure-water rinsing
	Hydrogen degassing at > 600 C
	Field flatness tuning
	2nd Electro-polishing (~20um)
	Ultrasonic degreasing or ethanol
	High-pressure pure-water rinsing
	Antenna Assembly
	Baking at 120 C
Cold Test (vert. test)	Performance Test with temperature and mode measurement (1st / 2nd successful RF Test)

Example of cavity fabrication process

EBW of dumb-bell



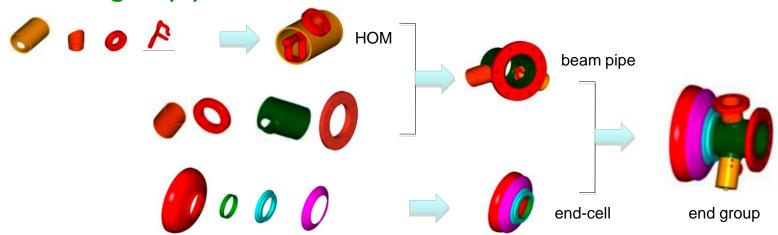

24 dumb-bells / day


EBW of 9-cell cavity

3 cavities / day

Welding of Ti helium jacket

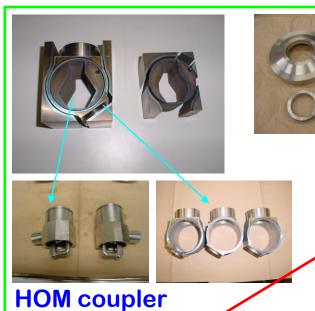
3 cavities / day



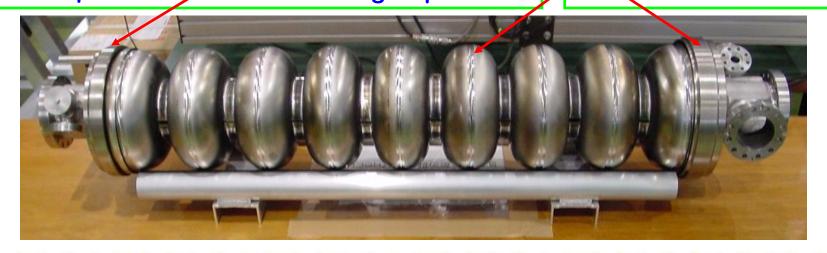
Example of cavity fabrication process

Machining of end-group parts

- 0
- Nb-Ti flange (6/cavity) 18 / day
- Nb beam tube (2/cavity) 6 / day
- Burring of ports (4/cavity) 12 / day
- Trimming of half-cell (18/cavity) 54 / day


EBW of end-group parts

6 end-groups (both sides) / day


Cavity Fabrication Process

Center-cells
(Tokyo Denkai; RRR~300 Nb)

Cavity Processing for Vertical Tests

Brarel Polishing ~100 µm

Initial EP pre-EP 100 µm ~10 µm

Anneal 750°C, 3h

Pre-tuning fo, flatness, HOM filter

Final EP 50 µm (20, 30 µm)

Hot Rinse with ultra-sonic bath 50°C, 1h

HPR 8MPa, 6~16h Assembly

Baking 120°C, 40h

(HF or H2O2 Rinse, 1h)

Outline

- Introduction
 - Industrial models assumed for the ILC SCRF cavities
- Industrialization Study in cooperation with Japanese Industries
 - Manufacturing process and facilities required
 - Industrial engineering examples

Boundary Conditions

+ We evaluate an ideal production facility from cavity fabrication to cryomodule assembly to produce 600 cavities per year by using a factory production simulation analysis.

[assumption]

- Consider only process time including preparing time to machining, welding, vertical test, surface treatment and cryomodule assembly excluding conveying time of parts and assemblies and costs of labors.
- Assumed cavity yield at 35MV/m = 80% through first cavity processing and 50% after repairing and second cavity processing.
- Based on 16 hours of actual run time (2 shifts) per day for each machining and process.
- Evaluate the number of machines and apparatus to satisfy the production rate by use of production simulation code.
- Machining, welding and other process would use special jigs to handle multiple subassemblies for a given process cycle.

Mass Production Models

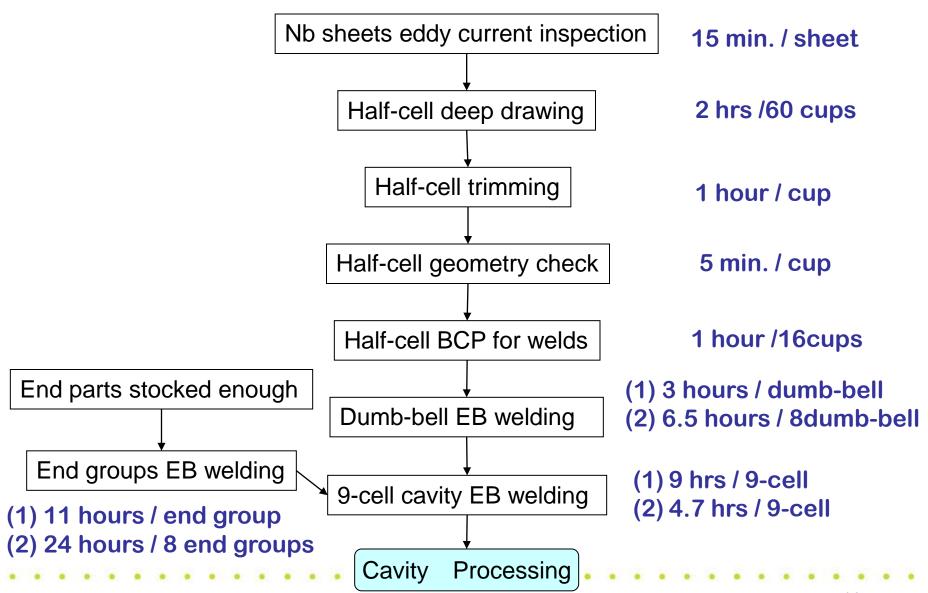
Case 1

- Laboratory R&D scheme
- 1 seam / one welding cycle

Case 2

- Current production scheme at some industries
- Dumb-bell: 8 seams / one welding cycle
- 8 dumb-bell + 2 end-group (= 9-cell cavity) EBW /one welding cycle

Case 3


- Simple mass production model
- 8 end-group / one welding cycle
- 8 dumb-bell + 2 end-group (= 9-cell cavity) EBW /one welding cycle

• Case 4, (in Preparation)

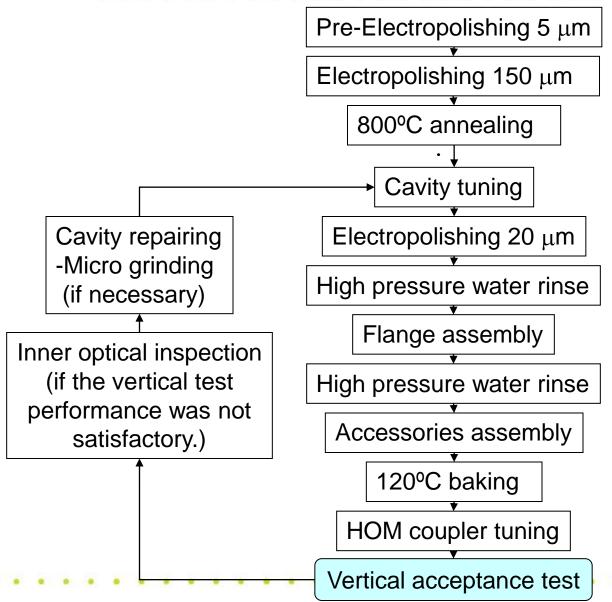
- 8 end-group / one welding cycle
- 8 x 9-cell cavity EBW / one welding cycle

Cavity Fabrication

Numbers of processes trade-off

	Fabrication Yield of % Dumb-bell		Fabrication of End group EBW	Assemble 9-cell Cavity With EBW	Number of machines and processes required			
		with EBW	EDVV	VVIIII EBVV	EB Welding	Vertical Test	Electro- polishing	
04	100	1 seam /		one 2(4,8)-cell				
Case1 R&D phase	90	welding cycle (3 hrs/3 cycle)	1 seam / welding cycle (11 hrs / 11	/ welding cycle (9 hrs/9 cycle)	12	6 7	6	
Case2	100		cycle)		8	6	9	
Current production	90	8 dumb-bell		one 9-cell / 2	→ 7*	7	6	
Case3 Mass Production Study	100	/ welding cycle 8 end-group /		welding cycle (4.7 hrs / 2				
	90	(6.5/8 hrs/3 cycle)	welding cycle (46.7/8 hrs/11 cycle)	welding cycle (46.7/8	welding cycle (46.7/8	cycle)	5 → 4 *	6 7

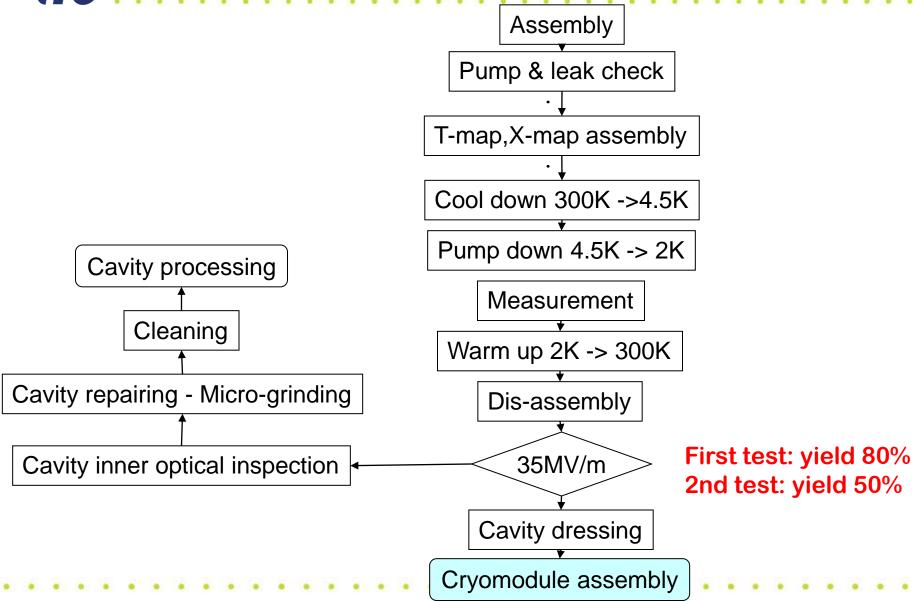
^{*} In case of common EBW machines for dumb-bell and end-group


Number of Cavity Fabrication Facilities Required

	actual run	Number of machines (processes)							
	time (2 shifts) per day for each process	Case1		Case2		Case3			
		Yield %							
		100	90	100	90	100	90		
Nb sheets eddy current inspection	16	1	1	1	1	1	1		
Half-cell deep drawing	8	1	1	1	1	1	1		
Half-cell trimming	16	3	3	3	3	3	3		
Half-cell geometry check	8	1	1	1	1	1	1		
Half-cell BCP for welds		1	1	1	1	1	1		
Dumb-bell EB welding		5	5	2*	2*	2**	2**		
End groups EB welding	16	5	5	5*	5*	2**	2**		
9-cell cavity EB welding		2	2	1	1	1	1		

* 2+5 →6, ** 2+2 →3 in case of common EBW machine

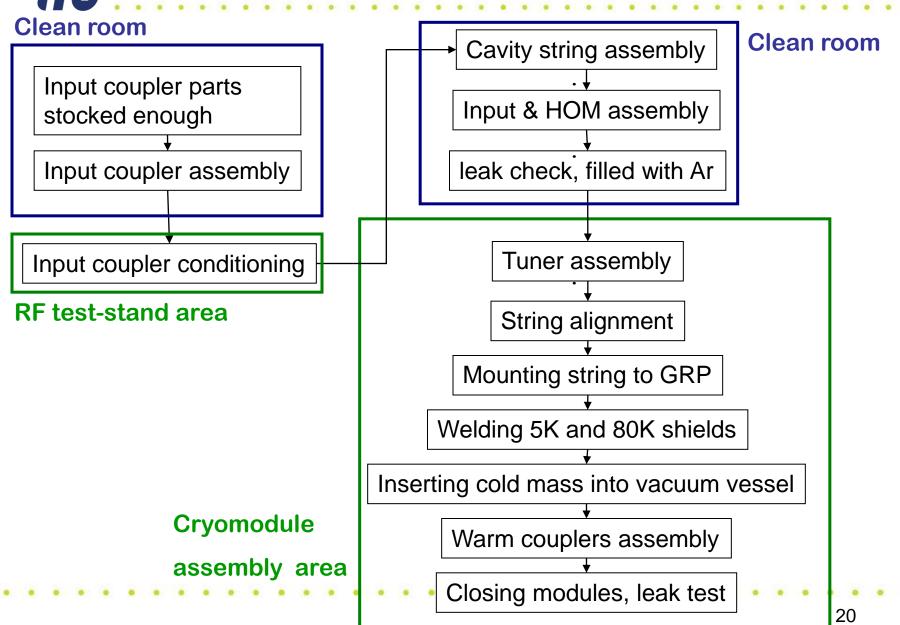
Cavity Processing



Cavity Processing

	actual run time	Number of machines (processes)						
	(2 shifts) per	Case1		Case2		Cas	se3	
	day for each	. Yield %						
	process	100	90	100	90	100	90	
Pre-Electropolishing		2	2	2	2	2	2	
Electropolishing 150μm	16	6	6	6	6	6	6	
Electropolishing 20µm		O	0	0	O		O	
800°C annealing	24	2	2	2	2	2	2	
Cavity tuning	16	2	2	2	2	2	2	
Flange assembly	8	1	1	1	1	1	1	
High pressure water rinse		2	2	2	2	2	2	
Assembly of accessories	16	2	2	2	2	2	2	
High pressure water rinse		2	2	2	2	2	2	
120°C baking	24	2	2	2	2	2	2	
HOM coupler tuning	16	1	1	1	1	1	1	

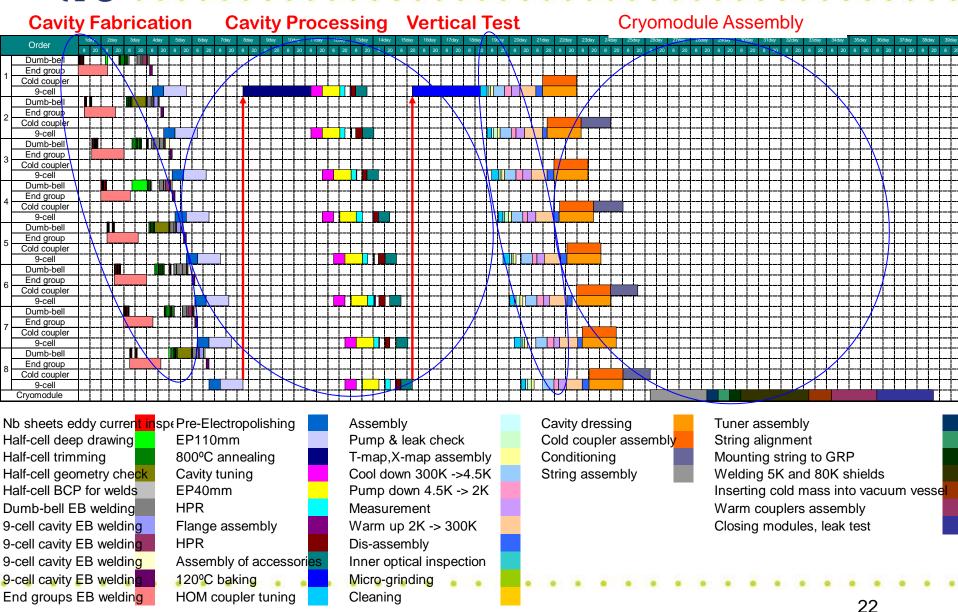
Vertical Acceptance Test



Vertical Acceptance Test

		Number of machines (proces					sses)		
	actual run time (2	Case1		Case2		Cas	se3		
	shifts) per day for each process	Yield %							
		100	90	100	90	100	90		
Assembly									
Pump & leak check		2	2	2	2	2	2		
T-map,X-map assembly									
Cool down 300K ->4.5K	16								
Pump down 4.5K -> 2K	10	6	7	6	7	6	7		
Measurement		O	0 /	0	,	0	'		
Warm up 2K -> 300K									
Disassembly		1	1	1	1	1	1		
Cavity inner optical inspection	8	1	1	1	1	1	1		
Cavity repairing - Micro-grinding	16	1	1	1	1	1	1		
Cleaning	8	1	1	1	1	1	1		

Cryomodule Assembly



Cryomodule Assembly

		N	lumber	of mach	machines (processes)		
	actual run time (2 shifts) per day for each process	Case1		Case2		Case3	
		•		Yield %			
		100	90	100	90	100	90
Cavity dressing		5	5	5	5	5	5
Cold coupler assembly		5	5	5	5	5	5
Input coupler conditioning		2	2	2	2	2	2
String assembly							
Input & HOM assembly		1	1	1	1	1	1
leak check, filled with Ar	16						
Tuner assembly			4	4	4	4	4
String alignment							
Mounting string to GRP							
Welding 5K and 80K shields		4					
Inserting cold mass into vacuum vessel		7	7	7	7	7	7
Warm couplers assembly	oly						
Closing modules, leak test	enne se suverne						

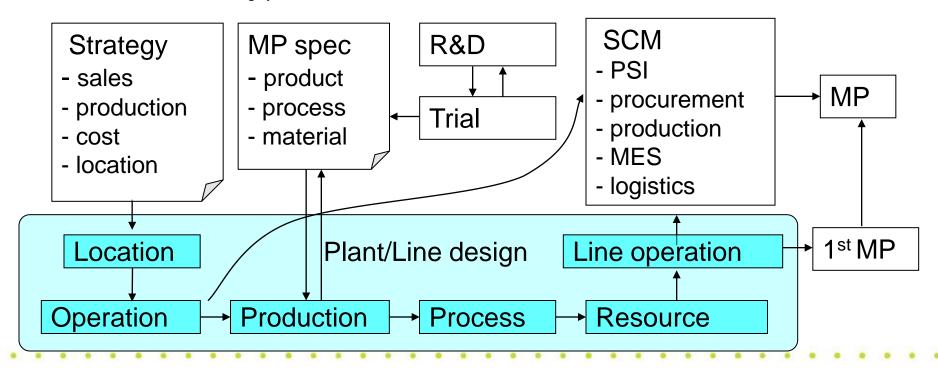
Example of Production Process (Case1)

Outline

- Introduction
 - Industrial models assumed for the ILC SCRF cavities
- Industrialization Study in cooperation with Japanese Industries
 - Manufacturing process and facilities required
 - Industrial engineering examples

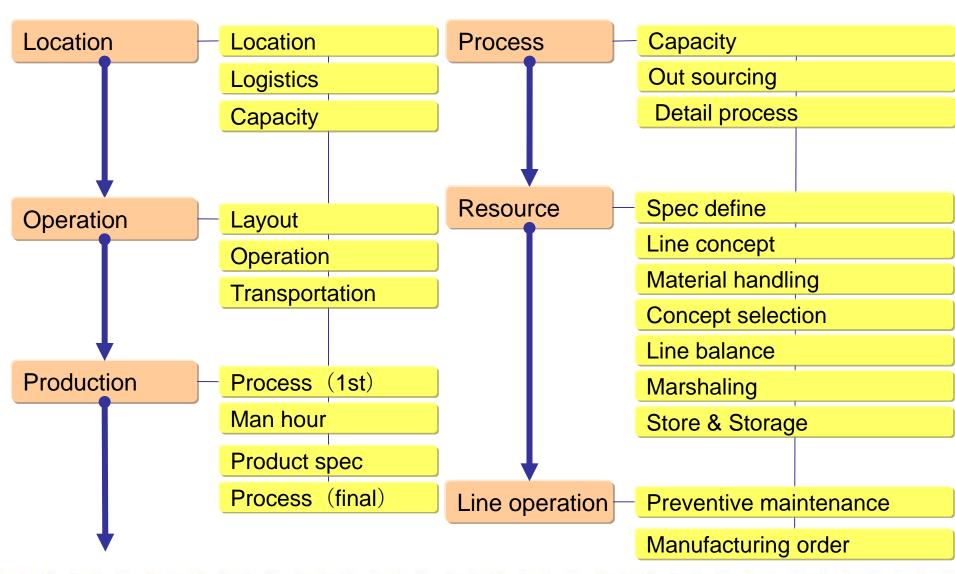
Mass Production Engineering Experience

- 1. Basic method for Mass Production line design
- 2. Example Mass Production line design like ILC
- 3. Consortium Experience with SELETE


Basic method for Mass production line design

- Start line: Outline of MP spec finished
- · Objective: Cost(Equipment investment, labor cost) and delivery(lead time)
- · KPI:
- Quality
- Cost ⇒estimate on cost simulation
- Delivery⇒ estimate on manufacturing simulation
- Cycle time: 2minutes(=200p/8Hr)
- · Motif: Semiconductor, LCD, HDD
- · Production term: many prodution model

PSI: Purchase & Production, Sales, Inventory


MES: Manufacturing execution system

SCM: Supply chain management

Basic method for Mass production line design

Example of Mass production line of new product

Abstract

- Product: Electrical control unit
- Amount: 100Kp/Y
- Investment: 500million yen
- Sales Price: 100k yen
- Customer: USA
- Return term: 5years

Steering committee

QMS: Quality management system

QC: Quality control CR: Cost reduction

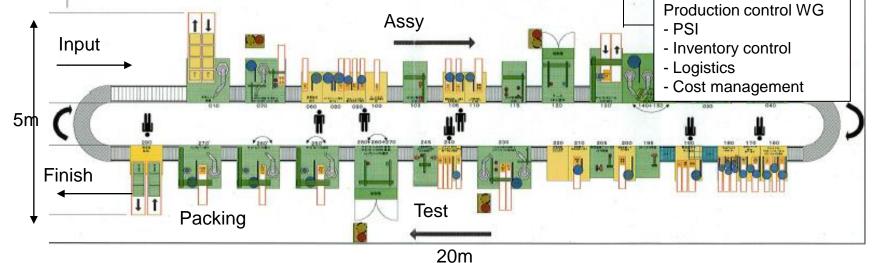
■PJ

- Committee:1time/M
- Confirmation of status
- Confirmation of problem

MP line WG

PJL,SPJL

- Process planning
- Development of Equipment
- Equipment investment plan


QC WG

- Traceability system
- QMS
- Process QC

Procurement WG

- CR
- Select of supplier

■ MP line idea

SELETE as a Consortium

Semiconductor Leading Edge Technologies, Inc.

SELETE was founded in 1996 as a consortium for development of production technologies using 300mm wafer equipments with equal capital investment from 10 semiconductor manufacturers.

FUJITSU、HITACHI、MATSUSHITA、MITSUBISHI、NEC、OKI、SANYO、
SHARP、SONY、TOSHIBA
Investment (500 million yen each company)

■ Objective:

Reduce of R&D cost for higher difficulty and R&D cost of semiconductor technologies

■ Target:

Evaluation and improvement for 300 mm wafer mass production equipment.

Output:

Evaluate 137 equipments necessary to all production technologies for 300 mm mass production plant.

Equipment performance target unify to International Sematech (13001).

SUMMARY

- ILC cavity industrialization models have been investigated in cooperation with Japanese Industries,
 - A production model: 3 cavities/day for 5 years
- Based on each process time determined by KEK, the required industrial facilities have been investigated,
- Dumb-bell process may be a critical pass to determine number of EBW facilities, and multiple seams per one welding cycle may help to reduce the number of EBW facilities,
- Full production model in preparation to be studied,
- Workshop layout and number of workers are to be further studied, as well as the cost-effective fabrication is to be investigated.

Acknowledgements

We would thank

 Japanese industries (MHI, Toshiba, and Hitachi) manufacturing SCRF cavities for their kindest cooperation for the industrialization studies.