ir iic

Current Status of SCRF Cavity Development

Jim Kerby, Fermilab for Rongli Geng and the S0 Cavity Team

23 May 2010

SCRF Cavity Technology and Industrialization Workshop / Kyoto

S0 Performance Goal

At the time of the RDR:

IIL

- Gradient and Q0 are fundamental length and power drivers for the ILC
- 35 MV/m in vertical test includes 10% technical margin for operating gradient of 31.5 MV/m in the machine
- ILC VT goal the multicell state of the art (at the time)

Table 3-1: Milestones for the SCRF R&D Program.

High-gradient cavity performance at 35 MV/m according to the specified
chemical process with a process yield of 50% in TDP1, and with a
production yield of 90% in TDP2 (S0, see section 3.1.3 for definition of
process yield)2010

ILC Research and Development Plan for the Technical Design Phase

Release 4

July 2009

ILC Global Design Effort

Director: Barry Barish

Prepared by the Technical Design Phase Project Management

Project Managers:

Marc Ross Nick Walker Akira Yamamoto

Towards Realization

	Standard Cavity Recipe
Fabrication	Nb-sheet (Fine Grain)
	Component preparation
	Cavity assembly w/ EBW
Process	BCP+ 1 st (Bulk) Electro-polishing (>120um)
	Ultrasonic degreasing with detergent, or ethanol rinse
	High-pressure pure-water rinsing
	Hydrogen degassing at > 600 C
	Field flatness tuning
	2nd Electro-polishing (~20um)
	Ultrasonic degreasing or ethanol rinse
	High-pressure pure-water rinsing
	Antenna Assembly
	Baking at 120 C
Vertical Test	Performance Test with temperature and mode measurement →inspection, reprocessing, other remediation

TESLA Technology Collaboration TTC-Report 2008-05

Final Surface Preparation for

ΪĻ

Superconducting Cavities

An attempt to describe an optimized procedure

Reply to the

Request for Consultancy from TTC

raised by

the ILC R&D Board Task Force on High Gradients (S0/S1)

23	May	2010	J	Kerby
----	-----	------	---	-------

SCRF Cavity Technology and Industrialization Workshop / Kyoto

The Challenges

- 35 MV/m gradient in vertical test
 - Q0 > 1e10 at 31.5MV/m, 8e9 at 35MV/m
 - Process Yield > 50% in 2010
 - Production Yield (up to 2 passes) > 90% in 2012
- Increase vendor capabilities across regions
 - Technical
 - Quantity

- Standardize (and improve) processing across laboratories
 - Push processing toward industries
- Improve diagnostic capabilities
 - Push towards earlier in the manufacturing cycle
- Improve communication of findings around the globe
- Work within prescribed funding limits

Cavity Yield Database

To improve reporting, consistency, and communication:

ILC Database is now fully functional

- http://tesla-new.desy.de/cavity_database/
- As of 26 March, ILC Database currently contains data from all three regions, from the last few years [92 cavities]
 - KEK [5 cavities]: [MHI005:MHI009]
 - JLab, Cornell, Fermilab [22 cavities]: [A5: A9], [TB9ACC010:TB9ACC017], [AES001:AES004], [TB9AES005:TB9AES010], JLAB-2
 - DESY [65 cavities]: [Z82:Z110], [AC112:AC129], [Z130:Z135,Z137:Z145], [AC147,AC149,AC150]
 - (Production 4,5,6,7)
- C. Ginsburg (FNAL), R. Geng (JLab), Y. Yamamoto (KEK), Z. Conway (Cornell), S. Aderhold, D. Gall, V. Gubarev, S. Yasar (DESY) LCWS 2010

Production Yield Plot: First Pass Definition

- Cuts
 - Cavity from vendor= ACCEL or ZANON or AES SN>=5
 - Fine-grain cavity
 - Use the first successful (= no system problem/limitation) test
 - Standard EP processing: no BCP, no experimental processes
 - Defined as JLab#1, DESY#2 (weld tank before test), DESY #4 (weld tank after test)
 - Ethanol rinse and 120C bake required for DESY cavities
 - (Ignore test limitation)
- Include binomial errors

NB: No explicit Q0 cut, but all ILC Eaccqualified cavities pass Q0>8E9

- Despite these cuts, some variability in fab and proc remains
 - Some variability facility specific
- Large number of cavities required to reduce statistical error

First Pass Yield

23 May 2010 J Kerby

IIL

SCRF Cavity Technology and Industrialization Workshop / Kyoto

7

• Cuts

- First pass
- Second pass
 - if (Eacc(1st successful test)<35 MV/m) then
 - if (2nd successful test exists) then
 - » plot 2nd test gradient
 - else
 - » plot nothing [assume 2nd test didn't happen yet]
 - endif
 - else
 - plot 1st successful test gradient
 - endif
- Include binomial errors

NB:

1.No explicit Q0 cut, but all ILC Eacc-qualified cavities pass Q0>8E9
2.HPR-only is a valid 2nd pass process

Up-to-Second Pass Yield

SCRF Cavity Technology and Industrialization Workshop / Kyoto

1st and 2nd pass yield comparison

Electropolished 9-cell cavities

Electropolished 9-cell cavities

Given the statistics it is difficult to generalize, but—

- Using production yield, the 2010 goal of 50% is met
- One more vendor/laboratory combination is now included in production plots
 - Another vendor and two laboratories on the verge
 - Five more vendors manufacturing cavities
 - Vendors taking on greater role in processing after EBW
 - Processing / Testing rate in Americas greatly increased
- Diagnostics improved, quench results better understood
- <~25MV/m (typ) a defect can be seen in a single cell
 - Repeated processing does not cure this \rightarrow in fact can make it worse
- >~25MV/m (typ) reprocessing can improve performance

Towards 2012

Success depends on

- Overcoming quench limit for Eacc <20MV/m
 - Need to prevent defects in material / manufacturing
- Increasing use of diagnostics earlier in the process
- Increased understanding and earlier remediation
- Faster feedback

		Standard Cavity Recipe	
Fabrication		Nb-sheet (Fine Grain)	
		Component preparation	
		Cavity assembly w/ EBW	
Process		BCP + 1 st (Bulk) Electro-polishing (>120um)	
	ustry	Ultrasonic degreasing with detergent, or ethanol rinse	
	Ind	High-pressure pure-water rinsing	
		Hydrogen degassing at > 600 C	
		Field flatness tuning	c
7		2nd Electro-polishing (~20um)	liatio
		Ultrasonic degreasing or ethanol rinse	med
		High-pressure pure-water rinsing	& re
		Antenna Assembly	tion
		Baking at 120 C	spec
Vertical Test		Performance Test with temperature and mode measurement →inspection, reprocessing, other remediation	Ins

T-mapping systems

KEK: fixed (for 9-cell)

ΪĿ

N. W.

DESY: rotation (for 9-cell)

S. Aderhold, Y. Yamamoto LCWS 2010

LANL: fixed (for 9-cell)

J-LAB: fixed (for 2-cell)

Optical inspection in the world

DESY : Kyoto Camera

FNAL : Kyoto Camera, O Questar long-distance microscope

Cornell : Inspection

Defect Location @ Cornell

LosAlamos: Karl Storz videoscope

J-Lab : Lab cavity inspection tool based on long-distance microscope, Kyoto

A PARTIC

Camera

K. Watanabe, SRF2009

KEK (STF) : Kyoto

MHI-08 : The location of target for Grinding

Effort for Repairing: Grinding ΪĹ

Grinder for sloped surfaces

Grinder for equator

Material for grinding : Diamond seat #400 - #3000 Polymond+water used for grinding (particle size = $40 \sim 3$ um), (POLYMOND)

MHI-08 : Grinding of the defect : cell #2 equator t = 172deg

In this case, the defect type was pit at the boundary between

EBW seam and HAZ.

History of the Grinding, (0) before Grinding.

- (1) 1st Grinding #400, 58 min
- (2) 2nd Grinding #400, 76min (Total 134min)
- (3) 3rd Grinding #400, 70min (Total 204min)
- (4) 4th Polishing #1000, 60min (Total : 264min) and EP (20 +30 um)

MHI-08 : 2nd V.T. result

- Progress work after 1st V.T. (June 2009):
- * Inspection after 1st V.T.

- * Make a replica and shape analysis
- * Local Grinding (One equator)
- * Cleaning by water and wiping before EP process
- * EP 20um, 50mA/cm2 (Air) at KEK-STF 1st water rinsing (Air) 90 min, HPR 2 hour
- * Inspection after EP 20um
- * Local Grinding to obtain narrow edge around circle.
- * EP 30um, 50mA/cm2 (Air) at KEK-STF 1st water rinsing (Air) 90 min, HPR 2 hour
- * Inspection after EP 30um, check the grinding location Field flatness measurement = keep the flatness.
- * EP 20um, 50mA/cm2 (Air) at KEK-STF 1st water rinsing (Air) 90 min
 - FM-20 (2%) 50 C 1hour Hot bath 50 C 1hour HPR 9 hour, baking 100 C 48 hour
- * 2nd Vertical test at KEK-STF. The gradient was raised to 27 MV/m. The quench was occurred at other location.

50

Inspection and Remediation

- T-mapping and optical inspection has proven very powerful in locating geometric defects that explain the majority of lower gradient quenches
- Local grinding has improved performance in 3 cavities so far (4th on the way)
 - Laser / e-beam remelting, barrel polishing / tumbling alternative remediation methods
- Re-EP successful in some cases
 - Also have examples of defects appearing w/ additional EP cycles
- Analysis of defect geometry started
 - Attempt to predict, rather than react
- Root cause of geometric defects still undetermined
 - Location typically, but not always near HAZ of equator weld

Fundamental understanding is increasing, but not yet sufficient. We do not yet have a set of inspection criteria for an as-built cavity.

Remediation / Improvements

		Standard Cavity Recipe
Defect Provention	Fabrication	Nb-sheet (Fine Grain)
		Component preparation
Defect Detection and Repair		Cavity assembly w/ EBW
Surface Resetting	Process	BCP + 1 st (Bulk) Electro-polishing (>120um)
For < 25MV/m		Ultrasonic degreasing with detergent, or ethanol rinse
quenches drive		High-pressure pure-water rinsing
defect recognition /		Hydrogen degassing at > 600 C
repair / prevention		Field flatness tuning
manufacturing cycle		2nd Electro-polishing (~20um)
For > 25 MV/ m limits		Ultrasonic degreasing or ethanol rinse
continue efforts to		High-pressure pure-water rinsing
better control and		Antenna Assembly
understand process		Baking at 120 C
Post VT Defect Remediation	Vertical Test	Performance Test with temperature and mode
Post VT Re-EP		→inspection, reprocessing, other remediation

;|r iic

Efforts to date have

- Increased number of vendors
- Increased vendor scope of work
- Increased the processing facilities
- Increased the diagnostic tools
- Increased the fundamental understanding of limitations Leading to the increased production yields seen now To 2012.....

Summary

- We have tens of cavities in the pipeline this year to work with
- We need an understanding of an earlier acceptance criteria
- We need to learn how to prevent pits and bumps
- We need to continue to best mix industry and laboratory skills