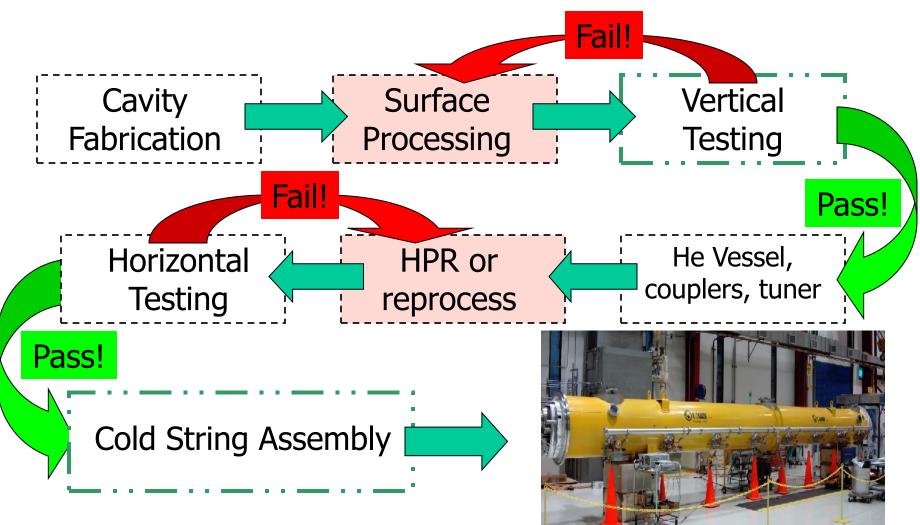
SRF Industrialization American Region Laboratory Plans

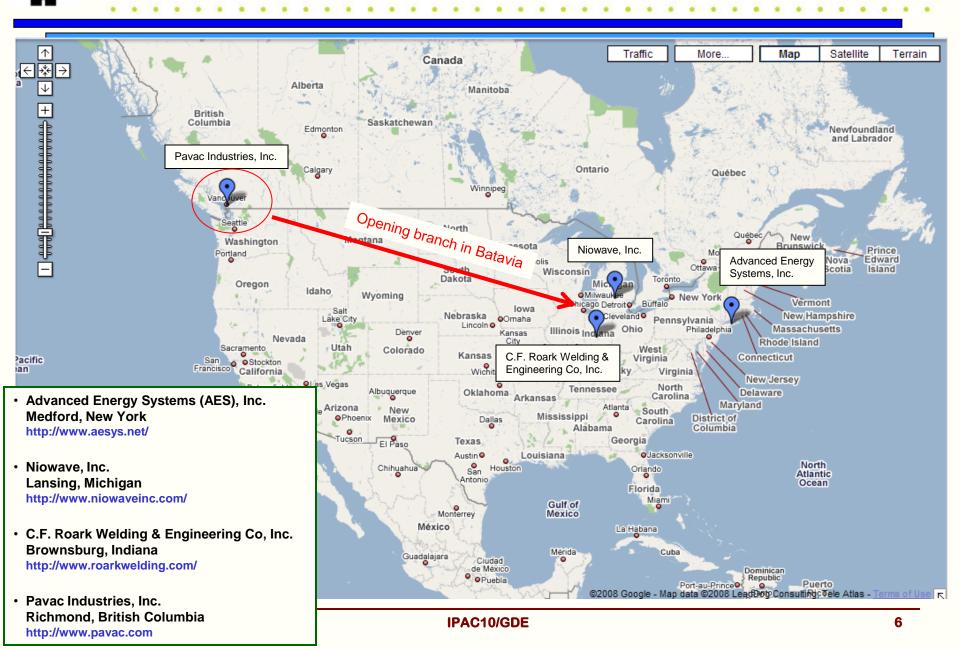
Bob Kephart IPAC10/GDE industrialization Kyoto, May, 2010



- Development of SRF capabilities in U.S. Industry has started in support of future SRF based projects. Examples:
 - ILC (by far the largest SRF project considered)
 - JLAB 12 GeV upgrade
 - FRIB
 - Project X (would employ ILC cavities)
 - ERL's
 - Etc
- U.S. SRF industrialization is funded with generic SRF and ARRA funds (vs ILC funds)
 - Addition activity is funded by future projects (e.g. above)
- In this talk I review the current status and plans for:
 - North American industrial fabrication of 1.3 GHz elliptical cavities
 - Industrial fabrication of ILC/PX cryomodule parts
 - Development of an industrial cavity processing capability
 - Development of RF components for ILC

- Develop SRF technology in labs, to the extent possible transfer technology to industry for project construction
- Motivation for Industrial Development:
 - <u>Competition:</u> which should lead to improved performance of SRF components and lower prices for future accelerators (ILC or Project X)
 - <u>Availability:</u> Multiple qualified vendors will ensure product availability in case one vendor ceases operations or has other large contracts
 - <u>Capacity:</u> Promotes increased industrial capacity in preparation for the construction of projects
- Concern: timing for industrialization
 - Project timescales (PX and ILC) are still uncertain
 - Once an industrial capability is created it atrophies if not used
- Concern: risk vs cost in industry → Projects assume risks
- Assume: labs provide costly cryogenic & RF test infrastructure

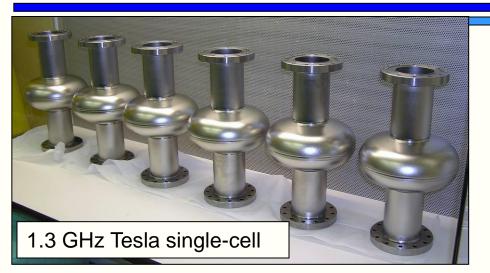
Cavity/CM process and Testing

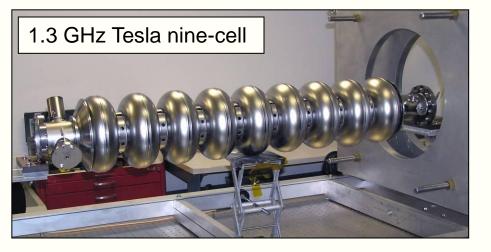

Plan... Develop in labs then transfer technology to industry

- 1.3 GHz cavity procurements support
 - Cavity R&D towards the ILC S0 goals (FNAL, ANL, JLAB, Cornell effort)
 - Construction of CM's to attempt to meet ILC S1 & S2 goals
 - Construction of prototype CM's for Project X
 - Development of qualified cavity vendors
- Currently plan to purchase Cavities with the "TESLA" shape
 - But may consider other shapes in the future
- Vendors of course also acquire valuable SRF experience by fabricating cavities of other shapes and frequencies for Projects other than ILC

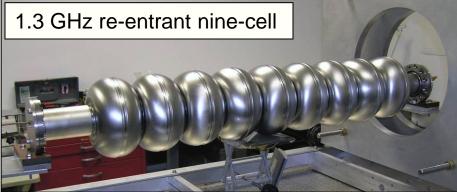
춯

North American Cavity Vendors

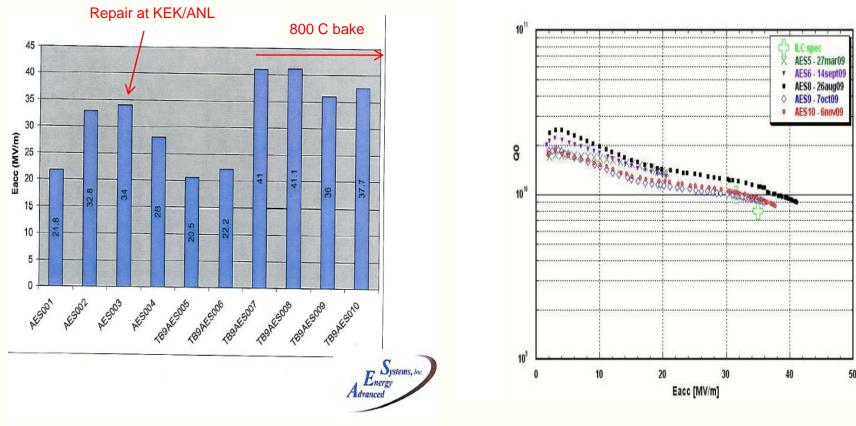

U.S. Cavity inventory and planned procurements


Tesla-shape nine-cell	cavities		
Description	No. Cavities	Status	
AES 1-4	4	Tested: AES2 at 32 MV/M, AES3 at 34 MV/m after repair	
AES 5-10	6	Tested: 4 of 6 tested at over 35 MV/m	
AES 11-16	6	Due soon	
AES 17-36	20	Ordered Feb 2010 with ARRA funds	
Accel 6-9	4	Tested: 2 of 4 above 35 MV/m at one point, degraded in subequ	uent tests
Accel 10-17	8	Tested: 5 of 8 over 35 MV/m. (ACC12 and ACC14 damaged)	
RI 18-29	12	Testing just started, 6 with bulk EP at RI, 6 delivered	
Jlab fine-grain 1-2	2	Fabrication complete at JLAB; J2 at 30 MV/M, J1 usable?	
Niowave-Roark 1-6	6	2 delivered, 4 close awaiting test of 1st two	
Additional ARRA	20	Evaluating bids from Roark/Niowave and PAVAC	
Total	88		
	37	Cavities received by end of March 2010	
	23	Processed and tested	
Tesla-shape single-cel	l cavities		
Description	No. Cavities	Status	
AES1-6	6	tested at Cornell; further testing in progress	
Accel 1-6	6	received Dec 2008; further testing in progress	
Niowave-Roark 1-6	6	tested at Cornell; further testing in progress	
PAVAC	6	3 delivered, testing in progress	
Total	24		
Already Received	21		

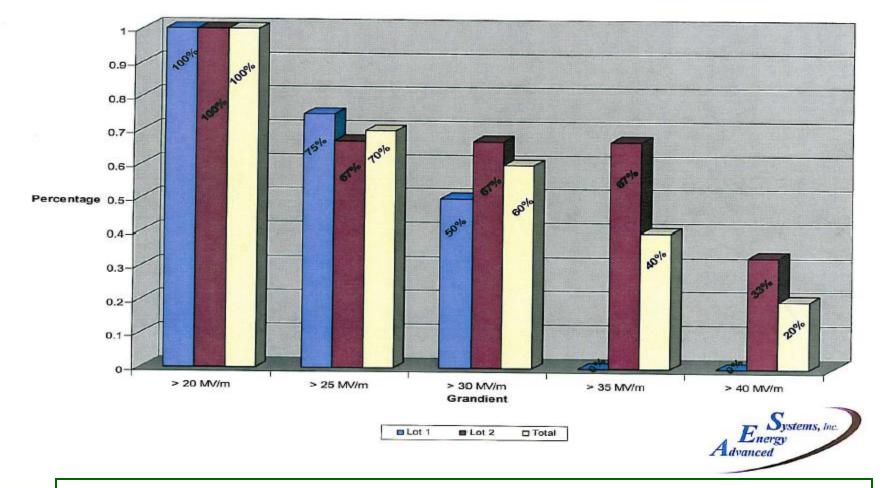
May 23, 2010


IPAC10/GDE

AES has complete production capability on-site 10 nine-cells delivered & tested; 6 + 20 more ordered



- Total number of cavities delivered and tested is still small !
- However, results are very encouraging
- Batch 1 (4 cavities) (used EBW from another company)
 - Delivered, tested
 - 1 cavity (AES002) exceeded 32 MV/M
 - 3 cavities, limited in 20's by defects (mostly pits),
 - AES003 repaired by local grinding of defects at KEK and EP at ANL, now 34 MV/M in VTS at Fermilab) (1st example of repair by grinding)
- Batch 2 (6 cavities) (EBW at AES with new welder)
 - Delivered, tested
 - Two cavities have defects (20, 22 MV/M)
 - Four cavities exceed 35 MV/M ! (41, 41, 36, 38 MV/M)
 - Last four cavities processed with 800 C bake...does this prevent pits ?
- Batch 3 (6 cavities)
 - Not yet delivered but expected soon
- Batch 4 (20 cavities)
 - Recently ordered with ARRA funds


AES 9-cell test results, 1st two batches

Low statistics, difficult to separate fabrication vs processing issues

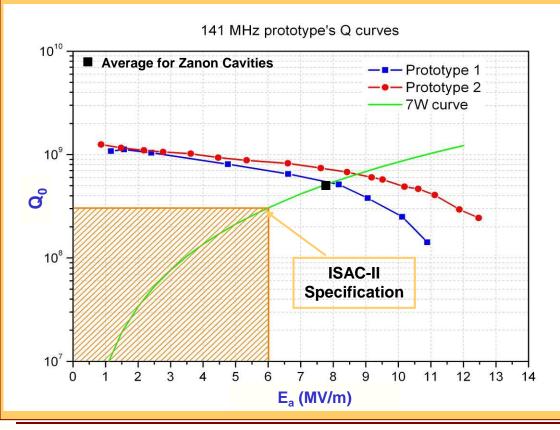
Q0's look reasonable

AES Yield vs gradient

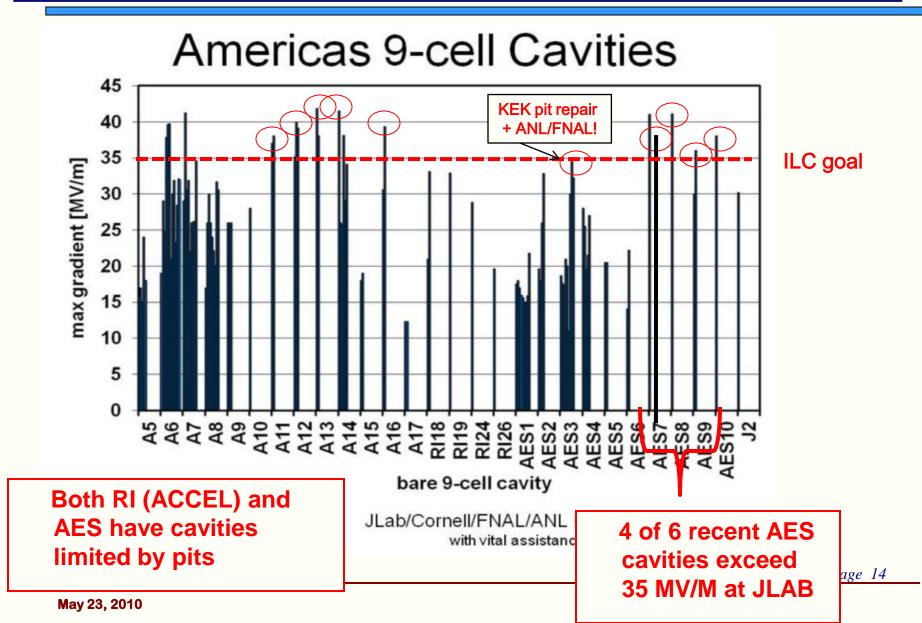
 Based on low statistics but AES yields in batch 2 are as good as achieved anywhere. Will be interesting to see next 6 cavities

Niowave & Roark collaborate on 1.3 GHz cavities Roark is working independently on low-beta structures

- Roark 325 MHz beta=0.22 single-spoke cavity
- Delivered Summer 2008
- Design = 10 MV/M @ 4K
- Exceeded 30 MV/M @ 2 K
- Ordered 10 more for Project X


- 6 Single-cell cavities deliver Jun 08
- Performed well
- 6 nine-cell cavities in fabrication
- 2 delivered (EBW/HOM problems)
- Evaluating bid on ARRA cavities

May 23, 2010


PAVAC is producing 20 coaxial resonators in collaboration with TRIUMF for the ISAC-II Phase-II extension

- Two prototypes manufactured and tested; production under way.
- Both prototypes perform significantly above ISAC-II specifications; average values of E_a=8.2MV/m, Ep=40MV/m cw (specification 6MV/m)
- Pavac delivered 3 of 6 1.3 GHz single cell cavities, Evaluating bid on ARRA 9-cell cavities
- Excellent expertise in EB welders... NEW! Opening a branch in Batavia

IPAC10/GDE

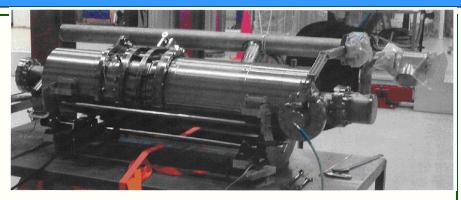
- The vendors learn through experience, so in general they will improve their manufacturing processes over time
- But, feedback from the laboratories is key to obtaining performance improvements
 - Careful QA and optical inspection of incoming cavities
 - Process & test cavities quickly
- Relatively small cavity orders allow for feedback between productions
 - AES made substantial improvements in tooling and installed an electron-beam welder after their first production of 4 ninecell cavities
- Larger orders will allow us to better understand costs
- Close communication and regular visits
- Assistance from experts at Cornell and JLab
- Stimulus procurements will give cavity vendors a big boost

- Industrial Electro-polish
 - ARRA funds make it possible for us to develop Electro-polish capability in U.S. industry
 - Competition to perform design study; AES won the bid
 - AES will construct a horizontal EP facility
 - Capable of processing 1300 and 650 MHz elliptical cavities
 - Benefits from existing clean room, HPR, and chemistry infrastructure funded at AES by Brookhaven National Lab

Eco-friendly Surface Processing

- Funded with ARRA funds
- Goal is to produce smooth clean cavity surfaces without using HF and other toxic chemicals
- 3 companies bid for design study
 - 2 selected to submit design study (Faraday bipolar EP, Cabot = CMP)
- Fund best to demonstrate performance with single cells

- Strategy on Cryomodule Industrialization
 - The value added during CM assembly is < 10% the value of the cryomodule.
 - The number we will assemble over the next few years is very small → have no plans to train industry to do assembly of ILC CM
 - Any training likely to be lost... without follow on work
 - Not even clear this would make sense for Project X volumes
- Strategy is to design CM at labs, order parts from industry, assemble at Fermilab


ILC may require a different strategy

- CM1: is a TTF Type III+ and was assembled at FNAL in our CAF facility from a kit of parts provided by DESY/INFN
 - Dressed cavities from DESY
 - DESY style lever tuners
 - Magnet package located at end of cavity string (but no magnet)
 - DESY and INFN provided assistance in assembly
- CM2: will be built in 2010 at CAF.
 - Another Type III+
 - Cold mass parts were procured in Europe with help from INFN
 - Populate with U.S. processed and dressed cavities (accumulating)
- CM3-CM6:
 - Type IV ILC/Project X design (larger pipe sizes)
 - Magnet package can be located in positions 2,5,8 (5 = center of CM)
 - Cold mass parts ordered in U.S. industry with ILC and ARRA funds
 - Populate with U.S. processed and dressed cavities
 - CM6 will be a CW cryomodule for Project X
- Cryomodules will go to NML: will try to meet ILC S1 and S2 goals

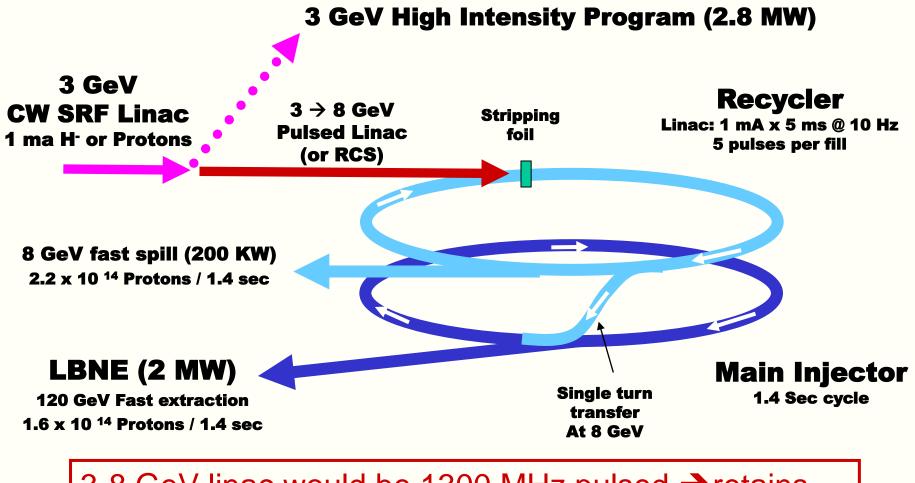
U.S. Industrialization of Cryomodules

CM3-6 Parts

- He Vessels:
 - Fabricated of Titanium (like XFEL)
 - 20 already procured from Hi-Tech (4637 N. 25th Ave., Schiller Park, II 60176)
 - 40 more being procured with ARRA funds
 - Likely vendors Hi-Tech, INCODEMA (www.INCODEMA.com), Titanium Fabrication Corp. (110 Lehigh Drive, Farifield, N.J. 07004), and Titan Metal Fabricators Inc. (835 Flynn Rd., Camarillo, CA. 93012)

Tuners

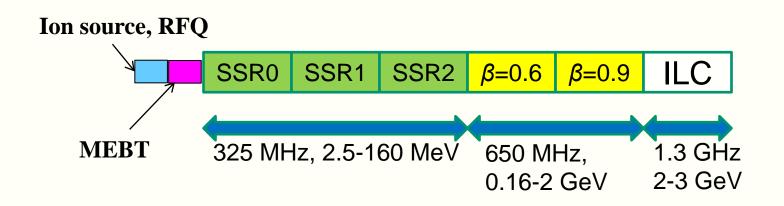
- For CM2 and beyond we will use Blade tuner developed by INFN
- CM2 and S1-Global: 12 tuners provided by INFN, built in Europe
- CM3-CM6: Tuners made by U.S. industry (ARRA)
 - 20 Ti blade tuners from INCODEMA; 20 from Hi-Tech


CM3-6 Parts

- Couplers (1300 MHz, TTF type)
 - Vendor is Communications and Power Industries, CPI, (150 Sohier Road, Beverly, MA. 01915-5595)
 - 74 couplers built for DESY, Orsay and SLAC/Fermilab
 - SLAC inspects, tests, and conditions couplers for Fermilab
 - 12 couplers delivered (via SLAC) for S1 global and CM2;
 - 10 more ordered via SLAC by ILC, delivery soon
 - 22 more ordered via SLAC (using ARRA funds), delivery ~7 months
- Cold mass parts and Vacuum Vessels
 - 4 cryomodules worth of Type IV parts on order
 - Vendor is PHPK Technologies (2111 Builders Place, Columbus, OH 43204)
 - 1st vacuum vessel (CM-3) has been delivered to Fermilab

LC RF Power components, electronics, etc

- CPI has built a two 10 MW multi-beam klystrons
 - One vertical, one horizontal (for DESY)
 - Vertical delivered and under test at SLAC
 - CPI building another for NML at FNAL
- ILC Marx modulators have been built on SBIR funds by the companies ISA Corporation (in the East Bay) and DTI.
- SLAC is working with other labs (in particular DESY) to develop an ATCA electronics module standard for ILC



3-8 GeV linac would be 1300 MHz pulsed → retains synergy with ILC R&D but long pulse R&D needed

May 23, 2010

 Design based on 3 families of 325 MHz Spoke resonators, two families of 650 MHz elliptical cavities, then 1300 MHz ILC cavities

Note: 650 MHz, β =0.9, 5-cell cavities are same physical length as 1300 MHz, β =1.0, 9-cell cavities so cryomodules are similar

Summary of PX 3 GeV CW linac

Section	Freq	Energy MeV	Number of cav/magn/CM	Type of
SSR0 (β _G =0.11)	325	2.5-10	26/26/ 1	Single spoke cavity, Solenoid
SSR1 (β _G =0.22)	325	10-32	18 / 18/ 2	Single spoke cavity, Solenoid
SSR2 (β _G =0.4)	325	32-160	44 / 24 / 4	Single spoke cavity, Solenoid
LB 650 (β _G =0.61)	650	160-520	42 / 21 / 7	5cell cavity, doublet
HB 650 (β _G =0.9)	650	520-2000	96 / 12 / 12	5cell cavity, doublet
ILC 1.3	1300	2000-3000	64/8/8	9-cell cavity, quad

290 Cavities, 34 cryomodules

Summary of PX 3-8 GeV Linac

- Gradient ~ 25 MV/m
- 1 mA 5 ms beam pulse @ 20 Hz (Upgradeable to CW)
- 25 cryomodules ILC Type IV (2/5/8)
- 400 9-cell 1300 MHz TESLA/ILC type cavities
- Construction of Project X would substantially contribute to U.S. industrialization of SRF for ILC

Integrated ILC/PX SRF Plan (Cryomodules)

U.S. Fiscal Year	2008		F	Y09			F١	ŕ10			F١	Y11			F	Y12			I	FY13			F	Y14			FY	15
1.3 GHz																												
CM1 (Type III+)		СМ	Ass'y				stall CM	С	М Те	st																		
CM2 (Type III+)	Omnibus Delay		Р	roces	ss & V'	TS/Dr	ress/H	тѕ	CM A	Ass'y	sw ap												Co	Opera mplet	e RF			
СМЗ (Туре IV)		De	esign	0	rder C	av &	CM P	arts						2/3 CM										t @ D arame				
CM4 (Type IV)																		sw a	IP									
CM5 (Type IV)												-						sw a	IP									
CM6 (Type IV+) CW Design																ign CM Hz CW		F				-			tall in MTF			
NML Extension Building					Desig	ın	Con	structi	on																			
NML Beam												e inje m cor			l		Bean	n Ava			F Unit					tallati acity)	on pei	riods
CMTF Building							Desig	n	Cons	tructi	on																	
650 MHz																												
Single Cell Design & Prototype																												
Five Cell Design & Prototype																												
CM650_1											Des	sign		Ord		0 Cav arts	* & CN) cess) ress/			50 CM Ass'y					
325 MHz																												
SSR0/SSR2 Design & Prototype							De	esign (I		Mecha oke R			arietie	s of			totype equire				ss & T require							
SSR1 Cavities in Fabrication (14)								Procui eady in				Р	roces	ss & V	TS/D	ress/H	ITS											
CM325_1										Des	sign	1		Proc	ure 3	25 CI	M Part	ts		25 CM Ass'y								

Design	Procure	Process &	Assemble	Install	Commission	
C C		VTS			& Operate	Page 26
		Dress & HTS				



CM1 installed

Dressing cavities for CM2

FNAL S1 global Cavities @ KEK

 Fermilab is engaged in vendor development with three North American cavity vendors:

– AES, Niowave/Roark, and PAVAC

- Also engaged in industrialization of cryomodule parts, surface processing, RF equipment
- Industrialization is being funded by ARRA funds
 but one time infusion of funds
- U.S. participation in the construction of ILC would require a large scale up of these efforts
- Likely that, Project X or other similar projects are the near-term path to U.S. SRF industrialization for a future ILC project