Cavity Gradient Discussion

Toward TDP-2 Goal

Rongli Geng

22th ILC Cavity Group Meeting, WebEx

4/27/10 Rongli Geng

ÌЦ

22th ILC Caviy Group Meeting

1

What we heard at ILC10?

•	What we heard at ILC10?					
		nt Session; Gradient R&D status and future strategy, plan for TDP2				
2	Conveners:	R. Geng, M. Champion, D. Reschke, H. Hayano				
ں ۱	(Mar 28, 08:3	0 – 1200)				
		Topics	Presenters			
6	8:30 - 10:00					
7	20min	Summary of understanding of quench limit in 9-cell cavities using T-mapping and optical inspection	Yasuchika Yamamoto(KE	<), Sebastian Aderhold(DESY)		
8	15min	Latest 9-cell cavity testing results from FNAL	Joe Ozelis(FNAL)	 Quench limit understanding 		
9	10min	Recent cavity test results from KEK	Eiji Kako(KEK)	 FE suppression progress 		
10	5min	New results on field emission suppression	Rongli Geng(JLab)	Test results of new cavities		
11		Comparison EP procesing parameters at KEK and JLAB	Takayuki Saeki(KEK)	• EP processing cross-checking		
12		IHEP high gradient efforts on 1.3 GHz 9-cell cavity for ILC	Jie Gao(IHEP)			
13		Efforts on the R&D of SRF cavity at Peking University	Ke-Xin Liu(PKU)	 Defect removal development 		
14	10min	Replica-method and local grinding repair	Ken watanabe(KEK)	Upcoming cavity proc. & test plan		
15				 Yield curve update 		
	10:00-10:30	Coffee break		Lab status update		
	10:30 -12:00					
18		Review of plans for upcoming cavity processing and testing	Camille Ginsburg(FNAL)			
19		Status report of Cornell activities	Zack Convay(Cornell)			
20		Status report of DESY activities	Eckhard Elsen(DESY)			
21	20min	Update on global cavity database and yield evaluation	Camille Ginsburg(FNAL)			
22	30min	discussion				

How are these talks related to our gradient goal?

ILC Research and Development Plan for the Technical Design Phase

Release 4

July 2009

ILC Global Design Effort

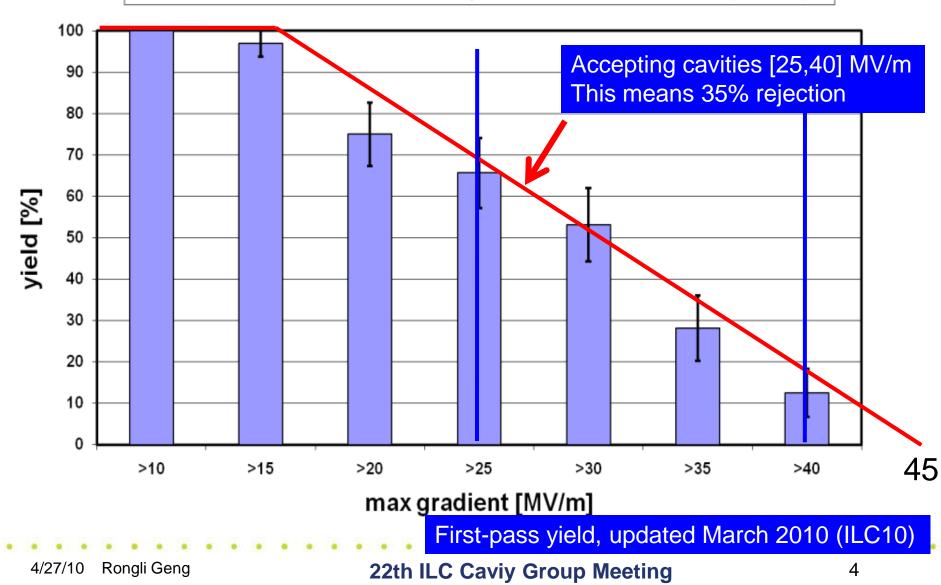
Director: Barry Barish

Prepared by the Technical Design Phase Project Management

Project Managers:

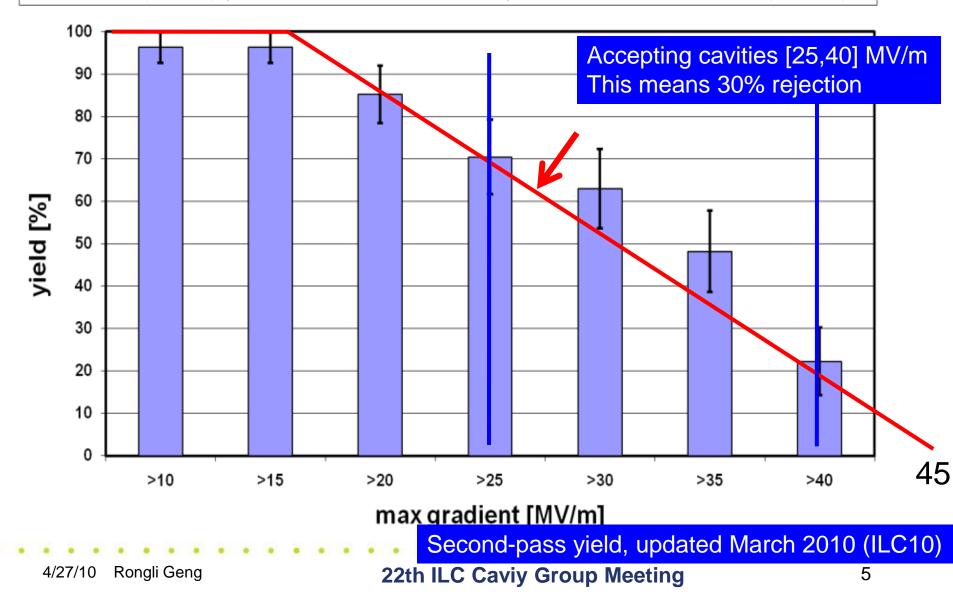
Marc Ross Nick Walker Akira Yamamoto

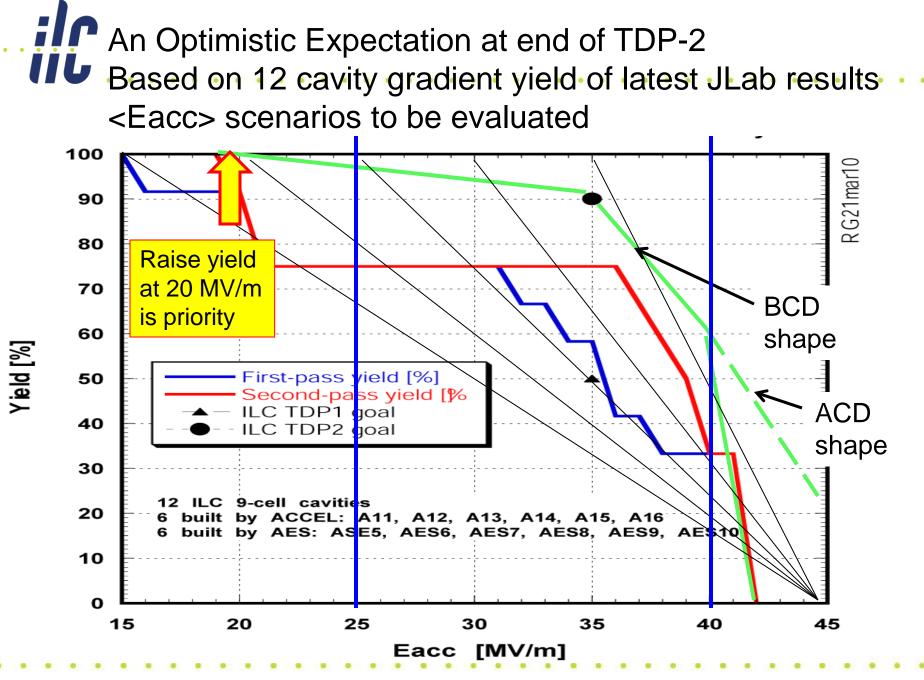
Table 3-1: Milestones for the SCRF R&D Program.


High-gradient cavity performance at 35 MV/m according to the specified	
chemical process with a process yield of 50% in TDP1, and with a	2010
production yield of 90% in TDP2 (S0, see section 3.1.3 for definition of	2012
process yield)	

İİL

22th ILC Caviy Group Meeting

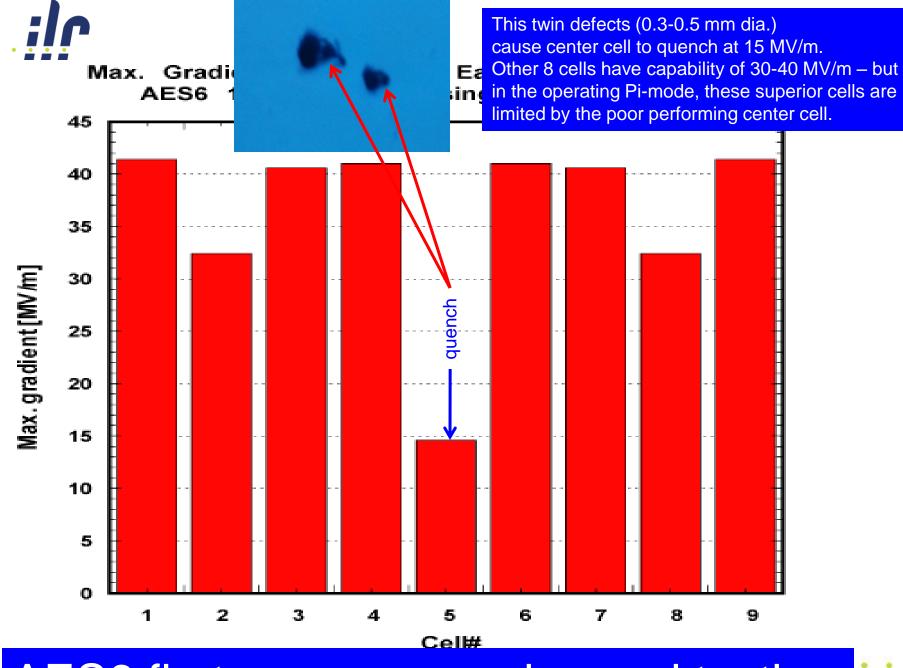

JLab/DESY first successful test of cavities from qualified vendors - ACCEL+ZANON+AES (32 cavities)



Electropolished 9-cell cavities

ĪĪĹ

JLab/DESY (combined) up-to-second successful test of cavities from qualified vendors - ACCEL+ZANON+AES (27 cavities)



4/27/10 Rongli Geng

22th ILC Caviy Group Meeting

Quench limit in EP 9-cell Cavities

- What we know from latest experience
 - Local
 - Near equator EBW
 - Sub-mm defect in size (with exceptions)
 - One defect in one cell
 - All other cells reach already higher gradient
 - This is ~1ppm probability considering total RF surface area
 - Quench limit 15-20 MV/m insensitive to re-EP
 - Quench limit > 25 MV/m improvement by re-EP

AES6 first-pass processing and testing

ilr

- Understand defect
- Prevent defect
- Remove defect
- Suppress field emission
- Improve/stabilize EP processing
- Develop enabling alternative
- Develop low-cost alternative
- And don't forget to ...
- Share experience
- Help each other

Where are We Going?

- Major issue is yield drop at 20 MV/m due to geometrical defect
- A set of inspection criteria for acceptance of as-built cavity is needed
 - Presently we have some tantalizing correlation between quench limit and the profile and size of operating defect
- But it may take a long time for final answers with confidence and it will also takes time for vendor to learn "build in quality" instead of "inspect out problem"
- We have only 2-3 years for TDP-2

Are we stuck?

- Probably not
 - What can/should we do?
 - Early defect prevention
 - Talk to your vendor and let them know what you have found on cavity surface, including "obvious" features
 - In fact you will find many features that do matter when you order cavities from new vendor
 - Send experienced cavity researcher (if you have one) to vendor and give advices and guidance
 - Post-fab/VT complete surface re-setting
 - Barrel polishing, tumbling before EP
 - Re-EP after first test
 - Post-VT local defect treatment
 - Local grinding
 - Local re-melting (e-beam or laser)

22th ILC Caviy Group Meeting

- But we have limited resources (manpower, equipment, expertise and available cavities)
- We need to balance and some level of optimization

Early Defect Prevention

- Pros
 - Benefit mass production
- Cons
 - May take longer time for results
 - Require lab industry collaboration (intellectual property, proprietary information, how should we transfer the knowledge? how much information will be shared?)
- Actions

Post-fab Surface Re-setting (before bulk surface removal)

- Pros
 - Increase tolerance for fabrication variability
- Cons
 - Cost
 - Added steps increases chance of damage
- How to select cavities?
 - New vendor cavities?
- Where is proven equipment and expertise?
 - CBP at KEK
 - Tumbling at Cornell
 - New machine at FNAL & JLab? When for 9-cell?

Post-VT Surface Re-EP

- Pros
 - Technology and equipment available globally
 - Seems effective in raising gradient for "featureless" defect (i.e. locally suppressed superconducting spots)
- Cons
 - Re-EP not effective for defects limiting gradient 15-20 MV/m
- How to select cavities?
 - Rapid quench location identification with Cornell OST, then rapid inspection of quench region. Move on to re-EP if no defect obvious
- This should be done in all labs with a EP machine. A reliable EP processing is imperative.

Post-VT Defect Treatment

- Three options: Local grinding, local e-beam remelting, local laser re-melting
- Pros

ijĻ ...

- Effective in removing geometrical defects
- local grinding of 9-cell demonstrated at KEK
- Local e-beam re-melting of 1-cell demonstrated at JLab
- Local laser re-melting of 1-cell demonstrated at FNAL
- Cons
 - Developments needed
 - Insertion devices risk damaging non-defective area
- How to select cavities?
 - T-mapping and optical inspection

Where/when equipment and expertise for 9-cell?

But don't forget

- It is imperative that your EP process is stable and reproducible
- You must keep field emission at bay up to 40 MV/m