

Cryomodule String Test: TTF/FLASH 9mA Experiment

John Carwardine (Argonne) Nick Walker (DESY)

ART Program Review, 9-10 June, 2010

Outline

- Cryomodule String Test goals
- TTF/FLASH facility overview
- Progress, results
- Gradient limits for 9mA studies
- Planning the next studies
- Wrap-up

Americas

String Test: goals from R&D Plan Integration Tests

- The highest priority goal is to demonstrate beam phase and energy stability at nominal current
- Important because of their potential cost impact:
 - demonstrate operation of a nominal section or RF-unit
 - determine the required power overhead
 - to measure dark current and x-ray emission
 - and to check for heating from higher order modes
- Needed to understand linac subsystem performance:
 - develop RF fault recognition and recovery procedures
 - evaluate cavity quench rates and coupler breakdowns
 - test component reliability
 - tunnel mock up to explore installation, maintenance, and repair

FLASH is still the only facility where these tests can be performed

9-10 June, 2010

ART Program Review - Carwardine

Operational challenge for FLASH

(well beyond typical beam parameters for photon users)

9-10 June, 2010

ART Program Review - Carwardine

FLASH Experts (DESY)

- Siggi Schreiber
 Bart Faartz
- Lars Froehlich
- Florian Loehl
- Holger Schlarb
- Nina Golubeva
- Vladimir Balandin
- Valeri Ayvazyan -
- Mariusz Grecki
- Waldemar Koprek
- Jacek Sekutowicz
- Stefan Simrock
- Kay Rehlich
- Kay Wittenburg
- Dirk Noelle
- Nick Walker
- Katya Honkavaara
- Mikhail Krasilnikov
- ANL
 - John Carwardine
 - Xiaowei Dong
 - Ned Arnold
- FNAL
 - Brian Chase
 - Gustavo Cancelo
 - Julien Branlard
- KEK
 - Shinichiro Michizono
 - Toshihiro Matsumoto
- SLAC
 - Chris Adolphsen
 - Tom Himel
 - Shilun Pei

An international team

- laser/gun injector set-up
- general set-up
- TPS installation / commissioning, BLM calibration
- optics matching & emittance
- optics & steering
- optics calculations
- optics calculations
- LLRF set-up and tuning
- LLRF set-up and tuning
- LLRF set-up and tuning (mostly gun)
- HOM absorber measurements
- LLRF (general)
- controls (DAQ)
- diagnostics
- diagnostics (BPM)
- overall coordination
- planning
- RF gun modelling
- LLRF / overall coordination
- Data analysis, optics modeling
- DAQ and data analysis tools

- LLRF (experiment & data analysis)

- Planning & scope
- LLRF (experiment & data analysis)

9-10 June, 2010

ART Program Review - Carwardine

~40 subscribers to ttf9mA mailing list (not all shown here)

RF/LLRF collaborators: DESY, KEK, FNAL, SLAC

Initiated by the ILC/GDE, co-led by DESY and GDE A DESY program with international participation

- A DESY program with international participation
- DESY
 - Machine study time on an operating user facility FLASH
 - System implementation and upgrades (hardware, firmware, software)
 - Machine experts and operations personnel
 - New beam dump line and beam loss diagnostics
- International (LLRF Focus): Argonne, Fermilab, KEK, SLAC

ART participation

- Focus on RF/LLRF, Global Systems WBS1.8 (~3FTEs total)
 - Argonne (J. Carwardine, N. Arnold, X. Dong)
 - Fermilab (B. Chase, G. Cancelo, J. Branlard, N. Solyak)
 - SLAC (S. Pei, C. Adolphsen)
- Beam loading studies planning and preparation (Fermilab)
- On-site participation in FLASH studies shifts (Argonne, Fermilab)
- Analysis of studies data
 - LLRF performance, energy stability, microphonics... (Fermilab)
 - Cavity jitter, rf power overhead (SLAC)
- Modeling & simulation
 - RF power distribution cavity setup schemes (Fermilab)
 - End-to-end simulations, beam loss analysis (Argonne)
- DAQ data archiver support and data analysis tools (Argonne)

TTF/FLASH facility overview

Comparison of machine parameters

		XFEL	ILC	FLASH design	9mA studies
Bunch charge	nC	1	3.2	1	3
# bunches		3250	2625	7200*	2400
Pulse length	μS	650	970	800	800
Current	mA	5	9	9	9

Synergies with 9mA program
FLASH FEL operations with long bunch trains
XFEL design/development, future operations
Important operations experience for NML & STF

Cavity field vector sum control

Americas

FLASH ve-Electron Lase in Hamburg

- A single klystron provides rf power to 24 cavities
- LLRF regulates the phase & amplitude of the vector sum of 24 cavity fields ("total energy gain")
- A critical issue: operating with a spread of gradients

9-10 June, 2010 ART Program Review - Carwardine

FLASH is an operating user facility

There is stong competition for the limited accelerator study time

9-10 June, 2010 ART Program Review - Carwardine

Americas

FLASH ee-Electron Lase in Hamburg

Long bunch-train high power operation

America FLASH Free-Electron Lat in Hamburg		History	of lo	ng bunch	-trai	n studie FTF/FL	es at ASH
	2009 F	FLASH (typical fo	r users)	1-30 bunches	≤1nC	FEL op.	
	2002	TTF	3MHz	750 bunches	2.8nC		
	2007	TTF2/FLASH	1MHz	800 bunches	0.6nC	lasing	
	Sept 08	TTF2/FLASH	1MHz	550 bunches	2.7nC	9mA exp.	
							_
	Aug 09	3-week shutdo					
	Sept 09	TTF2/FLASH	1MHz 3MHz	800 bunches 2400 bunches	3nC 2nC	9mA exp	- 5 weeks

•Long bunch trains are a fundamental advantage of the TESLA SCRF technology •Proof of principle has been long established

- •'9mA' studies are focused on **operational limits** (pushed by ILC requirements)
- •Total 9mA beam studies time to date: ~3 weeks

Long bunch trains vs single bunch

- All the challenges with setting up and running the machine are magnified when running long bunch trains
- Requires consistent bunch properties over the bunch train
 - **Final energy** Peak current / slice emittance High power (9mA) studies **Electron bunch trajectory** Minimize beam loss trips = DeltaE/E, bunch trajectory High average beam power Exception handling... Transient effects.. Beam loading **Photon science** Lorentz-force detuning DeltaE/E: < 0.1%**Microphonics** Pointing accuracy: < 10's urad Arrival time deltaT/T: 10's fs Pulse-heating Stable lasing conditions

Americas

FLASH

Energy profile example (Sept 09): Transient beam loading, Lorentz-force detuning,...

Jitter (first bunch): 4MeV Jitter (all bunches): 10MeV

Energy spread within bunchtrain: 5MeV

9-10 June, 2010

Americas

ART Program Review - Carwardine

High power long bunch-train operation

(Accomplished during 2 weeks of studies in Sept 2009)

Metric	Goal	Achieved	
Bunches per pulse	800 x 3nC (1MHz)	800 x 3nC	
	2400 x 3nC (3MHz)	1800 x 3nC 2100 x 2.5nC ~2400 x 2nC	
Charge per pulse	7200nC @ 3MHz	5400nC @ 3MHz	
Beam power	36kW (7200nC, 5Hz, 1GeV)	22kW (5400nC, 5Hz, 800MeV)	
Gradients close to quench	Up to 32Mv/m	Several cavities above 30Mv/m at end of long pulse	

• 15 contiguous hours running with 3mA and 800us bunch trains

Americas

FLASH

9-10 June, 2010

- Running at ~9mA with bunch trains of 500-600us for several hours
- Full pulse length (800us, ~2400 bunches) at ~6mA for shorter periods
- Energy deviations within long bunch trains: <0.5% p-p (7mA beam)
- Energy jitter pulse-pulse with long bunch trains: ~0.13% rms (7mA)

ART Program Review - Carwardine

Energy stability - Sept.20, 22:16 22:17, 6mA, 2100bunches

Pulse to pulse $\Delta E/E$

- RMS don't mean much. We need to look at peak to peak values.
- High frequency energy jumps of up to few MeV.

G. Cancelo

Disturbances: Microphonic detuning

Americas

Correlation of microphonic detuning at a point where the beam is off. Method used: calculate microphonic detuning and fit the data using the equation

- Over70% of the VS noise can be explained in terms of microphonics.
- There is also a low frequency component. What is it?

Dataset: Sept. 16:03 16:04, 700bunches, 3nC/bunch, 3MHz.

G. Cancelo

Major accomplishments ...but operationally very challenging

Reaching 3nC long bunch-trains was slower and more FLASH Program: painful than in Sept 2008 10 days to reach 500 bunches (vs 3 shifts in 2008) Bunch charge (7-day history) Commissioning and debugging new systems Machine setup & tuning issues: fighting beam loss trips But then... very stable with 800 bunches /1MHz (3mA) 3. 2.5 During the last 3 days, made rapid progress towards 9mA / 2400 bunches (but was not stable) "Could have done more if we had had more time" - 5 Plan was for 7 days tuning & setup, 7 days of characterization 0.5 < studies with the high beam loading, but Ο. 16.9 18.9 20.9. No high beam loading studies performed (ran out of time) Number of bunches (7-day history) 2500. Almost 2400 2000. bunches 15hr run 1500. (800 bunches) 1000. 500. 0. 15.9. 2009 18.9. 2009 19.9. 20.9. 21.9. 14.9. 2009 16.9 2009

9-10 June, 2010

Americas

FLASH

ART Program Review - Carwardine

Americas

FLASH

Main operations issue: beam loss

- Spent a lot of time fighting beam loss alarms, mainly in three locations
 - Bunch compressor BC3; first dipole of bypass line; dump line
- Largely about trying to find good operating points...

Beam loss analysis example: orbit changes over bunch train for 'good' and 'bad' pulses (~7.5mA, 2100)bunches)

FLASH Free-Electron Laser in Hamburg

Americas

X-Y position (mm) of last few bunches in each pulse

Evolution of horizontal position (mm) over bunch train (us)

The correlation between beam position and 'good' or 'bad' pulses is clear in this case

More analysis and 'detective work' is needed to quantify the limiting apertures and correlate with beam losses

Need to compare with other operating points (eg 3mA)

Note that this is one snapshot from one operating point

Blue = pulses terminated by blm integrated alarms Green = 'good' pulses

Characterization of operational limits... (just starting)

Characterization of maximum usable gradients

9-10 June, 2010

ART Program Review - Carwardine

Cavity gradient tilts: RF distribution schemes

ilr iit

Americas

Preliminary studies of alternate schemes for setting cavity Q_L and P_K

Example 1: FLASH 9mA test at DESY

Simulator mimics power distribution & coupling for ACC4, 5 and 6

Verification of simulated cavity gradients vs. experimental data without beam

Using simulator, predict behavior with 9 mA beam current

Using simulator, propose tuning scheme to avoid quench of "highgradient" cavities

Implement scheme and verify cavity tilts

9-10 June, 2010

ART Program Review - Carwardine

Piezo tuner compensation of Lorentz-force detuning (RF power overhead study)

Cavities in ACC6 with Piezo on

3MHz/3nC beam with 1500 bunches

Cavities in ACC6 with piezo off 3MHz/3nC beam with 1600 bunches

Amplitude [a.b.] mplitude [a.b.] Time (µ Time [µs] September 2009 **Measurement** 19.5 Amplitude [a.b.] flude [a.b.] 18.5 18.5 17.5 17.5 Time [us] Time [µs] ART Program Review - Carwardine

9-10 June, 2010

Americas

FLASH

DAQ environment

- The FLASH 9mA program has been a primary impetus for enhancing the DAQ Data Analysis environment for 9mA studies
 - Tools developed for improved data analysis are now used by others
 - Many data analysis questions have led to changes/enhancements in the DAQ implementation and use
- Argonne currently has the responsibility for ...
 - The Matlab interface to the DAQ archives (originally supported by FNAL)
 - Enhancing the channel database to better track and document the channel names and descriptions being archived in the DAQ
 - Used by system engineers to make sure all relevant data is included
 - Used by staff doing data analysis to understand what data is available
 - Development of a "DAQ Data Browser", intended to facilitate the analysis of the most common use cases
- These contributions benefit ILC 9mA studies, FLASH, and XFEL

N. Arnold

Can the 9mA program be extrapolated to ILC gradients?

Nominal operating gradients for ACC4-6

9-10 June, 2010

IIL

Americas

FLASH

ART Program Review - Carwardine

Theoretical maximum gradients (2010 configuration, no operating margins)

9-10 June, 2010

Americas

FLASH

ART Program Review - Carwardine

in Hamburg

Comparison of gradient-related operational issues (2010)

	RDR	ACC6 / ACC7 (Pk only)	ACC6 / ACC7 (Pk and Qext)
Nominal maximum operating gradient over all cavities in RF unit	31.5MV/m	25.7 / 28.5	28.6 / 31.4
Spread in nominal maximum operating gradients	31.5MV/m +/-0	18-32 / 25-33	21-34 / 26-39
Number of cavities operating at 31.5MV/m or above	26 of 26 (all at exactly 31.5)	4	7
Cavity quench limits	All: >33MV/m	21-34 / 26-39	21-34 / 26-39
LFD compensation with piezos	All cavities	All cavities	All cavities
Operate cavities close to quench?	Yes	Yes	Yes

Operating margins not included (key study topic)

9-10 June, 2010

ART Program Review - Carwardine

Extrapolating FLASH to ILC gradients

ACC7 cavity quench limits and gradient spread are approaching ILC nominal values. Allows realistic characterization studies of:

- Gradient overhead and RF power overhead requirements and trade-study
- RF distribution setup schemes with cavity powers close to ILC spec and realistic spread in operating gradients
- Lorentz-force detuning + piezo compensation near ILC gradients
- Vector sum control of cavity fields

9-10 June, 2010

Americas

FLASH

Next...

Remaining 9mA study topics

Demonstrating long bunch-train operation with heavy beam loading was a major milestone... but marks only the start of 9mA studies

- LLRF regulation with long bunch trains and heavy beam loading
- Gradient and rf power overhead studies (ACC67)
 - Optimization of Pk/Qext, prove concept
 - Piezo tuner compensation of LFD, microphonics
 - Trade-studies of cavity field regulation vs overhead
- HOM coupler studies with different bunch length
- New 9mA study topics in support of ILC R&D and SB2009
 - ILC Bunch Compressor stability studies
 - LLRF studies related to Klystron Cluster Scheme
 - Cavity 'Gradient flatness' studies (beam dynamics issue)

Preparing the next 9mA studies shifts

- Heavy beam loading is critical for answering key questions ...but
 - Only two accelerator studies periods scheduled before 2012
 - (One week of 9mA studies anticipated for January 2011)
- Must be well prepared to utilize the study time available
 - 2009 data analyzed, modeling done, software tools developed,
 - Practical issues understood, eg RF limits, tuning ranges,...
- More operations experience is needed with long bunch trains
 - Establish 'golden working points' + machine save/restore
 - Systematic procedures and automation for setup and tuning
 - Optimization for 3nC bunch operation
 - Stability and reproducibility over long flat top with beam loading
 - LLRF in general, rf gun + laser system.
 - Exception handling

Americas

FLASH

Lorentz-force detuning

Resonance Control at FNAL

 Recently tested first blade tuner

Americas

FLASH

LS LFD Compensation

- Implemented an adaptive version of the LS procedure that worked successfully in CCII
- Able to maintain flat phase during both fill and flattop
- Able to track the resonance as cavity was ramped down from 15 MV/m to 35 MV/m and back up again
- Flattop square and phase flat to few degrees at 35 MV/m
- LFD reduced to level of microphonics

- DESY is leading piezo tuner studies in support of 9mA program
- A least-squares procedure developed at Fermilab has yielded encouraging results at HTS (but single cavity, no beam loading)
- Appealing: collaboration between Fermilab and DESY in support of 9mA program

Wrap up

Program achievements to date

- Long-pulse high beam loading (9mA) demonstration
 - Reliable steady-state operation with 800us pulses and 3mA
 - Significant progress towards full spec: 9mA/600us, 6mA/800us
 - Energy stability with fully beam loading: <0.5% p-p
- Characterize operational limits
 - HOM studies with high beam power
 - The 'real' studies to characterize gradient overhead and RF power overhead require additional beam time
- Operation close to limits
 - Important operations experience from Sept 2009 studies
 - Machine tuning and setup is very challenging
 - Valuable experience can be gained from long-pulse FEL studies for photon users – we must participate

America

FLASH

We need to capitalize on operations data from Sept 2009

- Critical information about how the machine behaved so we can more readily repeat the beam conditions
- Important preliminary information on 9mA specific studies

Analysis examples

- Quantify the 'good' machine tuning conditions
- Stability of key parameters, sensitivity to jitter, drift, etc
- Optics, energy measurements,...
- Multi-bunch effects over long bunch trains
- System performance: diagnostics, LLRF, feedback, etc

Issue: limited resources for analyzing >10TB of data from Sept 2009...

9-10 June, 2010 ART Program Review - Carwardine

ART team: expected activities

- Analysis of Sept 2009 studies data (there's a long list)
- Modeling and preparation for upcoming 9mA studies (Jan 2011)
 - RF power distribution (Pk/Qext) schemes
 - Gradient and RF power overhead characterization
 - 'Gradient flatness' issue
 - Piezo tuner studies for LFD compensation
 - LLRF control & operations issues for Klystron Cluster HLRF scheme
- DAQ enhancements and data analysis tools
- Participate in FEL long bunch-train studies in July and Nov '10
- Post January studies: analyze data, prepare for 9mA studies in late 2011
- Appealing would be strengthening collaborations with DESY, eg on LLRF operations and R&D

- The 9mA program at FLASH will provide critical input for the ILC/TDP and provides invaluable operations experience for NML and STF
- Long bunch-train operation with heavy beam loading has been demonstrated: now must begin the 9mA characterization studies
- Even with the strong support from DESY Management, there are few studies opportunities before 2012 we must capitalize
- FLASH will remain the only facility capable of supporting the 9mA studies until beyond 2012 ... until NML and STF are commissioned
- Upcoming: second workshop on linac operations with long bunch-trains (Oct 4-7 at DESY)

Thank you