Prospect of comparing pulse-to-pulse ground motion and orbit at ATF2

Y. Renier

CERN

ALCPG11 22 Mars 2011

ATF2 Project

Y. Renier

ATF2

Project Description & Goals Instrumentation

Ground Motion Power Spectral Density

Feed Forward at ATF2

Description Simulation Results

Conclusion and Prospects

Backup Slides

・ロト・日本・山田・山田・山

ATF2 is:

- ILC BDS scaled down in E (Similar to CLIC's one).
- ▶ 1st experiment with local chromaticity correction.
- using the beam of ATF DR ($\epsilon_x \simeq 1 nm \ \epsilon_y \simeq 4 pm$).

ATF2 Project

Y. Renier

ATF2

Project Description & Goals Instrumentation

Ground Motion Power Spectral Density Coherence

Feed Forward at ATF2

Description Simulation Results

Conclusion and Prospects

ATF2 Goals

Beam Size

- Focus beam to $\sigma_x = 3\mu m \sigma_y = 37nm$.
- Get reproducible results.

Stability

- Use ILC-like trains : Intra-train feedback (Feedback On Nanosecond Timescale).
- Aim to achieve nanometer beam stability at IP.
- Not applicable to CLIC (where bunch spacing is too small).

ATF2 Project

Y. Renier

ATF2

Project Description & Goals Instrumentation

Ground Motion Power Spectral Density Coherence

Feed Forward at ATF2

Description Simulation Results

Conclusion and Prospects

Comparison of ATF2 with ILC and CLIC

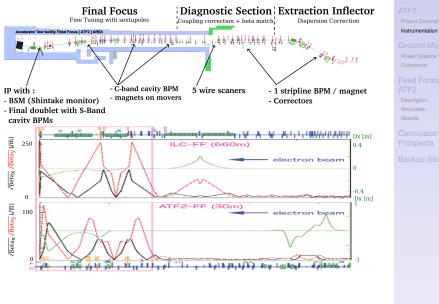
parameters	ATF2	ILC	CLIC
beam energy (GeV)	1.3	500	3000
10 ¹⁰ particles/bunch	1 – 2	2	0.4
bunches / train	1 – 30	2625	312
f _{rep} (Hz)	1 – 6	5	50
$eta_{x}^{*}(\textit{mm})$	4	21	6.9
$eta_{ extsf{v}}^{*}(\mu extsf{m})$	100	400	70
$\gamma \epsilon_x(nm.rad)$	5000	1000	660
$\gamma \epsilon_{m{y}}(m{nm.rad})$	30	40	20
$\sigma_x^*(nm)$	3000	640	45
$\sigma_{\rm V}^*({\it nm})$	37	5.7	1
Ĺ*(<i>m</i>)	1	3.5 – 4.5	3.5
ξγ	10 ⁴	10 ⁴	$5 imes 10^4$

ATF2 Project

Y. Renier

ATF2

Project Description & Goals Instrumentation

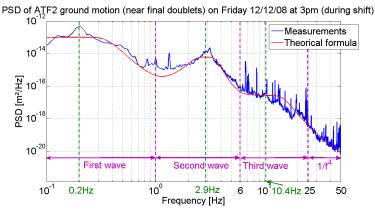

Ground Motion Power Spectral Density Coherence

Feed Forward at

Description Simulation Results

Conclusion and Prospects

Instrumentation



ATF2 Project

Y. Renier

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣・のへで

ATF2 Ground Motion Measurements¹

ATF2 Project

Y. Renier

ATF2

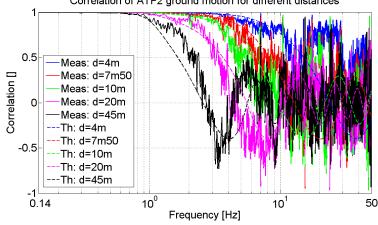
Project Description & Goals Instrumentation

Ground Motion

Power Spectral Density Coherence

Feed Forward at ATF2

Description Simulation


Conclusion and Prospects

Backup Slides

Power Spectral Density property

$$A^2 = \int_{f=0}^{\infty} p(f) \,\mathrm{d}f \tag{1}$$

ATF2 Ground Motion Measurements¹ Correlation of ATF2 ground motion for different distances

ATF2 Project

Y. Renier

ATF2

Project Description & Goals Instrumentation

Ground Motion

Coherence

Feed Forward at ATF2

Description Simulation Results

Conclusion and Prospects

Backup Slides

Coherence definition

$$C(f) = 1 - \frac{p(f, L)}{2 \times p(f)}$$
(2)

¹made by B. Bolzon

Description of the Feed Forward at ATF2

Feed Forward

- In CLIC no bunch to bunch feedback is possible.
- Measure Ground Motion on quadrupoles between the pulses.
- Correct for the effects before the next pulse.

Test at ATF2

- Lower frequency at ATF2 (6Hz) than in CLIC.
- ATF2 and CLIC BDS optics are similar.
- High resolution BPMs available ($\simeq 100$ nm).
- μm level reconstruction achieved.
- Would demonstrate the principle of such a correction.
- Just need some sensors and fast-enough correctors.

ATF2 Project

Y. Renier

ATF2

Project Description & Goals Instrumentation

Ground Motion Power Spectral Density

Feed Forward at ATF2

Description

Simulation Results

Conclusion and Prospects

Simulation

Conditions

- ATF2 nominal lattice (sextupoles off).
- Ground Motion (GM) model based on measurements.
- Used PLACET tracking code.
- Elements are displaced by the amount of relative motion compared with the 1st element.
- Incoming beam jitter.
- BPM and sensor noise included.
- Limited number of sensors (geophones).

ATF2 Project

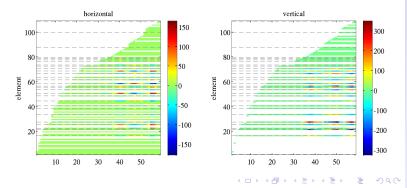
Y. Renier

ATF2

Project Description & Goals Instrumentation

Ground Motion Power Spectral Density

Feed Forward at


Description

Simulation Results

Conclusion and Prospects

Initialization

- Compute the matrices of the effects of element displacements on BPM readings.
- Find the elements with the higher effects and select them to have GM sensor.
- Put also a sensor on the first and last element.

ATF2 Project

Y. Renier

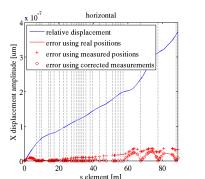
ATF2

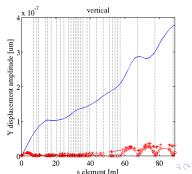
Project Description & Goals Instrumentation

Ground Motion

Power Spectral Density Coherence

Feed Forward at ATF2


Descriptior


Simulation

Conclusion and Prospects

Algorithm - Each Pulse

- From the measured GM interpolate the displacements of other elements linearly with the distance (GM measurements corrected).
- Deduce the induced beam displacements.
- Reconstruct and remove incoming jitter from measurement.

ATF2 Project

Y. Renier

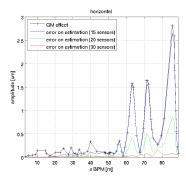
ATF2

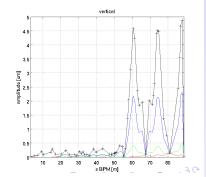
Project Description & Goals Instrumentation

Ground Motion

Power Spectral Density Coherence

Feed Forward at


Description


Simulation Results

Conclusion and Prospects

Algorithm - Each Pulse

- From the measured GM interpolate the displacements of other elements linearly with the distance (GM measurements corrected).
- Deduce the induced beam displacements.
- Reconstruct and remove incoming jitter from measurement.

ATF2 Project

Y. Renier

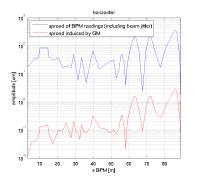
ATF2

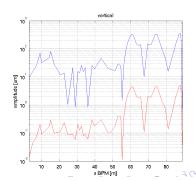
Project Description & Goals Instrumentation

Ground Motion

Power Spectral Density Coherence

Feed Forward at ATF2


Description


Simulation Results

Conclusion and Prospects

Algorithm - Each Pulse

- From the measured GM interpolate the displacements of other elements linearly with the distance (GM measurements corrected).
- Deduce the induced beam displacements.
- Reconstruct and remove incoming jitter from measurement.

ATF2 Project

Y. Renier

ATF2

Project Description & Goals Instrumentation

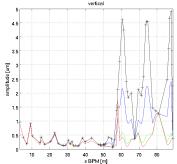
Ground Motion

Power Spectral Density Coherence

Feed Forward at

Description

Simulation Results


Conclusion and Prospects

Jitter Correction Results

Principle

- Remove predicted GM effect from measurements.
- ► Reconstruct pulse to pulse x, x', y, y', ^Δ_E and propagate.

ATF2 Project

Y. Renier

ATF2

Project Description & Goals Instrumentation

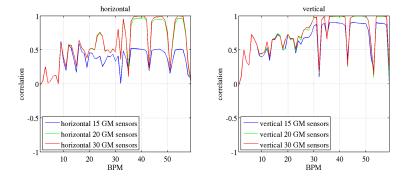
Ground Motion

Power Spectral Density Coherence

Feed Forward at

Description

Simulation


Results

Conclusion and Prospects

Backup Slides

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Correlation between jitter corrected displacements and estimated GM effects

ATF2 Project

Y. Renier

ATF2

Project Description & Goals Instrumentation

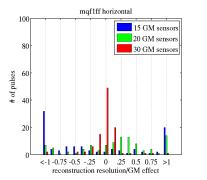
Ground Motion

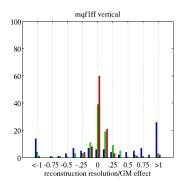
Power Spectral Density Coherence

Feed Forward at ATF2

Description

Simulation


Results


Conclusion and Prospects

Backup Slides

▲□▶▲□▶▲□▶▲□▶ ■ のへの

Ratio of residual measurements over expected

ATF2 Project

Y. Renier

ATF2

Project Description & Goals Instrumentation

Ground Motion

Power Spectral Density Coherence

Feed Forward at ATF2

Description

Simulation

Results

Conclusion and Prospects

Backup Slides

・ロト・西ト・田・・田・ ひゃぐ

Conclusion & Prospects

Conclusion

- Concept of feed-forward understood.
- Beam jitter subtraction is critical.
- With 30 sensors at 6Hz, GM effect is measurable.

Prospects

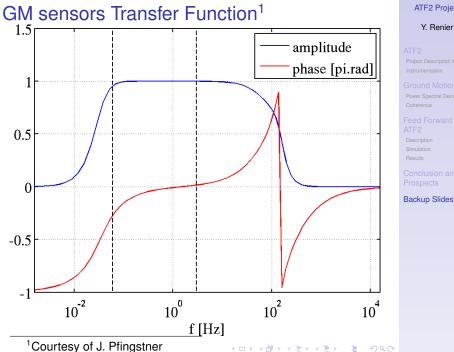
- Errors on magnet fields not considered yet.
- Feed forward implementation (in CLIC) is under study (J. Pfingstner).
- Presently, sextupoles must be turned off.

ATF2 Project

Y. Renier

ATF2

Project Description & Goals Instrumentation


Ground Motion

Power Spectral Density Coherence

Feed Forward at ATF2

Description Simulation Results

Conclusion and Prospects

ATF2 Project

Y. Renier

ATF2 Ground Motion Model Parameters Fit¹

Model

- ► Wave Propagation ⇒ close enough elements move together.
- 3 Waves with adjusted amplitude, frequency, velocity and width.
- Good agreement with measurements once tunned.

Parameter table

$$p(f) = \sum_{i=1}^{3} \frac{a_i}{1 + [d_i(\frac{f - f_i}{f_i})^2]^4} \quad (3)$$
$$C(f, L) = J_0\left(\frac{2\pi fL}{v}\right) \quad (4)$$

f1	[Hz]	 0.2
a1	[m**2/Hz]	 1.0 E-13
d1	[1]	1.1
v1	[m/s]	1 000
£2	[Hz]	 2.9
a2	[m**2/Hz]	6.0 E-15
d2	[1]	3.6
v2	[m/s]	 550
£3	[Hz]	10.4
a3	[m**2/Hz]	2.6 E-17
d3	[1]	 2.0
v 3	[m/s]	250

¹made by B. Bolzon

ATF2 Project

Y. Renier

ATF2

Project Description & Goals Instrumentation

Ground Motion Power Spectral Density

Feed Forward at

Description Simulation Results

Conclusion and Prospects