SiD Tracking Performance at High/Energies

SLAC

П

2011 ALCPG Meeting

•____

• SiD • Tracking in SiD

- SiD has a 100% silicon tracker composed of inner pixel layers and outer strip layers treated as an integrated tracking system
 - Pixel sensors covers r < 200mm region with 5 barrel and 7 endcap layers
 - Strip sensors cover r > 200mm region with 5 barrel and 4 endcap layers
 - Barrel strip layers have axial strips that only measure the bend coordinate
 - Endcap strip layers have pairs of trapezoidal sensors with 12° stereo angle to measure both the bend and non-bend coordinates

Tracker Design Metrics

- Low-mass silicon vertex and tracking detectors to minimize the effect of multiple scattering
 - Roughly 10% X₀ except for barrel/endcap transition and far forward regions
- \diamond ~10 tracking layers with excellent resolution and 2-hit separation to provide robust pattern recognition capabilities

SiD · Momentum Resolution

• Momentum resolution typically ~0.2% for $|\cos(\theta)| < 0.65$

• $\sigma(p_T) / p_T < 0.5\%$ over most of solid angle for 1 GeV $< p_T < 100$ GeV

SiD · Impact Parameter Resolution

• DCA resolution typically ~15 μ m for p_T = 1 GeV, $|\cos(\theta)| < 0.65$

Most tracks multiple scattering limited – resolution approaches $\sim 4\mu m$ at high p_T

• Side • Tracking Pattern Recognition

- Determining track-finding performance in complex physics events requires:
 - Detailed simulation of the tracking sensors to transform GEANT energy deposits into tracker hits
 - Pattern recognition code that finds tracks among the constellation of hits
- SiD has developed tracking code (SeedTracker) in the lcsim framework explicitly intended for detector design studies
 - Tracking code makes no assumptions about detector geometry, so new detector designs can be tried without modifying/re-tuning the tracking code
 - User control of tracking algorithm is through a list of tracking "strategies" to be tried, with each strategy specifying which layers to use in track finding, the role of each layer, constraints on p_T and impact parameter, and a χ^2 cut
 - SeedTracker algorithm then provides an exhaustive search of all combinations of hits that could potentially form a track to find the best track candidates

• SiD • SeedTracker Algorithm

- SiD has developed track finding code in the lcsim framework Track finding begins by forming all possible 3 hit track seeds Seed in the three "Seed Layers" Brute force approach to finding all possible track seeds Require the presence of a hit in a "Confirmation Layer" • Significantly reduces the number of candidate tracks to be investigated Add hits to the track candidate using hits on the "Extension Layers" Discard track candidates with fewer than 7 hits (6 hits for barrel only tracks)
 - If two track candidates share more than one hit, best candidate is selected
 Upon each attempt to add a hit to a track candidate, a helix fit is performed and a global χ² is used to determine if the new
 - track candidate is viable

• SiD • Track Finding Strategy

- The user interacts with the track reconstruction program by specifying one or more "strategies"
- Typical strategy requirements:
 - At least 7 hits on the track
 - Only 1 hit per layer
 - Special barrel only strategy with 6 hits used to pick up low- p_T particles in the central region
 - **p**_T > 0.2 GeV
 - r ϕ and s z impact parameter cuts $|d_0| < 10$ mm and $|z_0| < 10$ mm
 - $\chi^2 < 25$
 - Bad hit χ^2 parameter = 10 (used to ignore a single outlier hit)
- "Strategy Builder" used to find optimized sets of seed and confirm layers used for efficient track finding
- The remainder of this talk will focus on post-LOI improvements to the tracking code and performance measurements for complex events (ttH @ 1TeV)

• SiD • New Planar Geometry

LOI geometry consisted of cylinders and disks with virtual segmentation

New geometry models each silicon sensor – rectangular detectors in barrel, trapezoidal detectors in endcaps

• SiD • Realistic Detector Geometry

Blow-up of vertex detector showing hits on planar sensors

• SiD LOI Geometry – CAD Drawing

• SiD LOI Geometry – Event Display

• Side Event Display / CAD Drawing Overlay

• SD • Realistic Hit Digitization

- In LOI studies, charge was deposited on the nearest strip/pixel
- New code provides detailed simulation of charge deposition, Lorentz drift, diffusion, and charge sharing between adjacent strips/pixels
 - Charge deposition for strip detectors based on CDF Si sensor simulation algorithm
 - For pixels, can either use strip deposition model extended to pixels or detailed modeling using electric field maps
- Readout chip code accounts for noise and readout threshold and produces raw hits
- Raw hits are clustered using a nearest neighbor algorithm
- Tracker hits are formed giving hit position and uncertainty

^{*iH*} SiD • Tracking Efficiency

- Some tracks are not findable by the tracking algorithm
 - p_T too low, not enough hits on the track, impact parameter too big, etc.

Breakdown of reasons a track isn't found

Selection	LOI: $t\bar{t}$ @ 500 GeV	New: $t\bar{t}H$ @ 1 TeV
$p_{\rm T} \ge 0.2 {\rm ~GeV}$	$(93.45 \pm 0.11)\%$	$(94.02 \pm 0.11)\%$
Nhit ≥ 6	$(90.77 \pm 0.13)\%$	$(91.54 \pm 0.12)\%$
Seed Hits Present	$(99.77 \pm 0.02)\%$	$(99.76 \pm 0.02)\%$
Confirm Hit Present	$(99.96 \pm 0.01)\%$	$(99.97 \pm 0.01)\%$
$ \mathbf{d}_0 \le 1 \text{ cm}$	$(99.83 \pm 0.02)\%$	$(99.80 \pm 0.02)\%$
$ z_0 \le 1 \text{ cm}$	$(99.72 \pm 0.03)\%$	$(99.81 \pm 0.02)\%$
Track Reconstruction	$(99.05 \pm 0.05)\%$	$(98.78 \pm 0.05)\%$

- Tracking performance is very similar to LOI
- Track reconstruction algorithm has ~99% efficiency for findable tracks

$\cdot \mathfrak{SD} \cdot \mathbf{Tracking}$ Efficiency vs \mathbf{p}_{T}

LOI (tt @ 500 GeV)

Planar Sensors and Realistic Digitization (ttH @ 1 TeV)

• \mathfrak{SD} • Tracking Efficiency vs $\cos(\theta)$

LOI (tt @ 500 GeV)

Planar Sensors and Realistic Digitization (ttH @ 1 TeV)

• SiD • Comparison with MC Truth

Identify which MC particles are associated with each hit

- Assign track to the MC particle that contributes the most hits
- Count how many hits on the track are from other MC particles

· SiD · Fake Tracks

- Define a fake track as one that has fewer than half of its hits from a single MC particle
- Fake track rate in 1 TeV ttH sample (0.79%) is considerably higher than seen in the LOI for 500 GeV tt sample (0.07%)
- Fake tracks have minimum number of hits allowed

SD • Where are Fake Tracks Located?

Fake tracks are generally in the central region where the tracker has only axial strips – z coordinate is only constrained by ~92 mm length of strip

SiD · Fake Track Momentum

Fake tracks tend to be low momentum, but there is a tail to high momentum

Richard Partridge

• SiD • Goodness of Fit

Fake tracks typically have larger χ^2 than non-fake tracks

SiD · Summary

- Introduction of planar sensors and realistic hit digitization has improved realism of SiD tracking simulations
- Tracking efficiency for findable tracks in 1 TeV ttH events is ~99% with these improvements
 - Very similar to what was achieved in the LOI for 500 GeV tt events
- ◆ Fake track rate for 1 TeV ttH events is ~0.8%
 - Roughly an order of magnitude higher than in the LOI
 - Fakes have minimum multiplicity, concentrated in barrel region
 - If this fake rate proves problematic, can either increase number of hits required for a track (with some loss of efficiency at low momentum) or introduce additional measurements (stereo or pixel layers in tracker)
- Algorithm improvements (and a few bug fixes) have substantially improved track reconstruction speed
 - Average of 120 seconds / event for complex 1 TeV ttH events
 - See talk in software session later today