

• SiD • Tracking Performance Overview

LOI showed excellent performance for baseline SiD tracker

- ♦ >99% track finding efficiency over most of the solid angle
 - ~98% in core of 500 GeV light quark jets
- Momentum resolution typically ~0.2% for $|\cos(\theta)| < 0.65$
 - $\sigma(p_T) / p_T < 0.5\%$ over most of solid angle for 1 GeV $< p_T < 100$ GeV
- DCA resolution typically ~15 μ m for p_T = 1 GeV, $|\cos(\theta)| < 0.65$
 - Most tracks multiple scattering limited resolution approaches $\sim 4\mu m$ at high p_T
- ◆ >99% of tracks have ≤ 1 mis-assigned hits
 - Fake track rate is 0.07% for tt events

Post-LOI Challenges:

- Increase detail/realism in modeling of the tracker
- Efficient tracking simulations with beam backgrounds, higher E_{cm}
- Address deficiencies in LOI tracking

• SD • Increasing Realism of Simulations

This goal is essentially complete

Planar detector geometry with individual sensors simulated

- Fully overlapping rectangular sensors in barrel detectors
- Overlapping trapezoidal sensors on conical supports for endcap detectors
- Realistic charge deposition model for strips and pixels
 - For strips, track segment is divided into pieces and drifted/diffused to strips
 - For pixels, can either use strip model or Nick's PixSim package that provides detailed modeling of various types of pixel detectors
- Nearest neighbor clustering of hit strips/pixels
- Hits are formed with realistic hit position and uncertainties

However, there was some collateral damage

- "Ghost Tracks" are found when there are sufficient number of extra hits from overlapping sensors to form a second track
 - Code to add track hits from overlapping sensors also needed for Kalman fitter

• SiD • Efficient Tracking Simulations

Substantial work on making realistic simulations faster

- Fixed subtle bug in making HelicalTrackHits (used by tracking) from the strip digitization output
 - Showed up when we switched to trapezoidal endcap sensors with rotated strips
 - Strip rotation not accounted for giving large hit errors
 - With small number of layers, SiD relies on precise hit measurements to resolve ambiguities and keep number of viable hit combinations under control
 - Ron, Christian, and Norman all saw significant improvements in tracking speed
 - See slides posted in simulation sessions for details
- Improved FastCheck code that quickly checks a pair of hits for compatibility with the p_T and impact parameter cuts
- Aggregated endcap sensors into layers for multiple scattering
 - At some point, geometry infrastructure changes caused aggregation code to fail
- Make an early identification of track candidates that would eventually be discarded in favor of a better quality candidate

• S.D. Address Deficiencies in LOI Tracking

Working to eliminate dips in tracking efficiency

- Problem traced to difficulty in calculating track path lengths for low momentum loopers in barrel tracker where axial strips make a poor measurement of the z coordinate (which was being used to order hits)
- Have a fix need to make sure there is no collateral damage

Develop Kalman fitting code for final track fit

• Work started last summer by Stanford student – needs more work to complete

^{*iH*} SiD • Tracking Performance

 Tracking performance for more realistic tracker is very similar to what we presented in the LOI

Breakdown of reasons a track isn't found

Selection	LOI: $t\bar{t}$ @ 500 GeV	New: $t\bar{t}H$ @ 1 TeV
$p_{\rm T} \ge 0.2 {\rm ~GeV}$	$(93.45 \pm 0.11)\%$	$(94.02 \pm 0.11)\%$
Nhit ≥ 6	$(90.77 \pm 0.13)\%$	$(91.54 \pm 0.12)\%$
Seed Hits Present	$(99.77 \pm 0.02)\%$	$(99.76 \pm 0.02)\%$
Confirm Hit Present	$(99.96 \pm 0.01)\%$	$(99.97 \pm 0.01)\%$
$ \mathbf{d}_0 \le 1 \text{ cm}$	$(99.83 \pm 0.02)\%$	$(99.80 \pm 0.02)\%$
$ z_0 \le 1 \text{ cm}$	$(99.72 \pm 0.03)\%$	$(99.81 \pm 0.02)\%$
Track Reconstruction	$(99.05 \pm 0.05)\%$	$(98.78 \pm 0.05)\%$

• SiD • Possible Concern: Fake Tracks

- Fake track rate in 1 TeV ttH sample (0.79%) is considerably higher than seen in the LOI for 500 GeV tt sample (0.07%)
- Preliminary look indicates they meet the track-finding criteria
 - Cases looked at appear to be combinatoric fakes with the minimum allowed hit multiplicity composed of hits from many different MC Particles

SD • Where are Fake Tracks Located?

Fake tracks are generally in the central region where the tracker has only axial strips – z coordinate is only constrained by ~92 mm length of strip

SiD · Fake Track Momentum

Fake tracks tend to be low momentum, but there is a tail to high momentum

Richard Partridge

• SiD • Goodness of Fit

Fake tracks typically have larger χ^2 than non-fake tracks

· SiD · Summary

- Lots of progress towards meeting post LOI goals
 - Increase detail/realism in modeling of the tracker is largely complete
 - Significant progress in making tracking code work efficiently for challenging environments with high hit density
 - Working to address deficiencies in LOI tracking
- Tracking performance advertised in LOI appears to be holding up rather well

 May be starting to see some indications of problems for complex events

- Increased fake rate for ttH@1 TeV
- Slow tracking performance for dense jets in central region
- Perhaps need to think about some optimization studies (i.e., would four stereo layers in outer tracker be better than five axial only layers)
- A few items still need work
 - Development of a Kalman fitter for the final track fit

Elimination of ghost tracks due to hits in overlapping sensors
Richard Partridge