INTEGRATED LI LENS-TARGET SYSTEM

Alexander Mikhailichenko

Cornell University, Wilson Lab., Ithaca, NY 14853

Presented at 2011 Linear Collider Workshop of the Americas (ALCPG11)

on March 20, 2011

POSITRON SOURCE FOR ILC

>60% positron polarization

Polarized electrons can be obtained in the same way

In principle, positrons could be generated by positrons, so the linacs become independent

Spectral distribution and polarization schematics for Undulator Radiation

Hatched areas correspond to the passage of radiation through the collimator

Collimator helps to enhance integrated photon polarization

PROGRAM KONN T.A.Vsevelezhskaya, A.A.Mikhafichenko

Monte-Carlo simulation of positron conversion

Energy of the beam; Length of undulator; Undulator period $M=L/\lambda_{u}$; K-factor; Emittance; Beta-function; Number of harmonics (four); Number of positrons to be generated;

Target: Distance to the undulator Thickess; Diameter of target; Material; Diameter of hole at center; Step of calculation Acceleration: Distance to the lens; Length of structure; Gradient; Diameter of collimator at the entrance; Diameter of trices; External solenoidal field; Further phase volume captured;

CALCULATES at every stage: Efficiency in given phase volume; Polarization in given phase volume; Beam dimensions; Phase-space distributions; Beam lengthening; Energy spread within phase space; Lithum Lens: Distance to the target; Length; Diameter; Thioness of flanges; Material of flanges; Gradient; Step of calculations;

Beam energy, GeV	150	250	350	500
Length of undulator, <i>m</i>	170	200	200	200
K factor	0.44	0.44	0.35	0.28
Period of undulator, <i>cm</i>	1.0	1.0	1.0	1.0
Distance to the target, m	150	150	150	150
Radius of gamma collimator, <i>cm</i>	0.049	0.03	0.02	0.02
Emittance, <i>cm</i> · <i>rad</i>	1e-9	1e-9	1e-9	1e-9
Bunch length, <i>cm</i>	0.05	0.05	0.05	0.05
Beta-function, m	400	400	400	400
Length of target/ X_0	0.57	0.6	0.65	0.65
Distance to the length, <i>cm</i>	0.5	0.5	0.5	0.5
Radius of the lens, <i>cm</i>	0.7	0.7	0.7	0.7
Length of the lens, <i>cm</i>	0.5	0.5	0.5	0.5
Gradient, MG/cm	0.065	0.065	0.08	0.1
Wavelength of RF, <i>cm</i>	23.06	23.06	23.06	23.06
Phase shift of crest, rad	-0.29	-0.29	-0.29	-0.29
Distance to RF str., <i>cm</i>	2.0	2.0	2.0	2.0
Radius of RF collimator, <i>cm</i>	2.0	2.0	2.0	2.0
Length of RF str., <i>cm</i>	500	500	500	500
Gradient, MeV/cm	0.1	0.1	0.1	0.1
Longitudinal field, MG	0.015	0.015	0.015	0.015
Inner rad. of irises, <i>cm</i>	3.0	3.0	3.0	3.0
Acceptance, MeV cm	5.0	5.0	5.0	5.0
Energy filter, $E > -MeV$	54	74	92	114
Energy filter, E< - <i>MeV</i>	110	222	222	222
		4.5		
Efficiency, e^+/e^-	1.5	1.8	1.5	1.5
Polarization, %	70	76	75	70

LOSSES FOR DIFFERENT MATERIAL OF TARGET

If energy *Q* deposited in mass *m*, then the temperature rise is

$$\Delta T = \frac{Q}{mc_V},$$

where $c_{\mathcal{L}}$ stands for the heat capacity. In its turn, for the $1 cm^2$ cross section

$$Q \cong l[cm] \times l[cm^{2}] \times 2[MeV/g/cm^{2}] \times \rho[g/cm^{3}].$$

For the gamma target, the length *l* is a fraction of radiation length, $l \cong \frac{1}{2}X_0 / \rho$,

$$Q \cong X_0 \times 1[MeV]$$

From the other hand

$$m = \rho \times \mathbf{l}[cm^2] \times \frac{X_0}{2\rho} = \frac{1}{2}X_0 \times \mathbf{l}[g],$$

so the temperature gain goes to be

$$\Delta T \cong \frac{2}{c_{V}[J/g/^{o}K]} \begin{bmatrix} {}^{o}K \end{bmatrix} \left(\cong \frac{2A}{25[Mol/g/^{o}K] \cong const : (D-P \ law)} \right)$$

For Ti $c_{V}=0.5 J/g/{}^{\circ}K$; for W $c_{V}=0.134 J/g/{}^{\circ}K$; for Pb $c_{V}=0.13 J/g/{}^{\circ}K$, So ratio of temperatures comes to

$$\Delta T_{Ti} : \Delta T_W : \Delta T_{Pb} \cong 1 : 3.7 : 3.8; \qquad (A_{Ti} : A_W : A_{Pb} \cong 47 : 183 : 207)$$

The ratio difference in temperature gain is not so drastic; however it is important if the temperature approaching the melting threshold.

Usage of heavier targets desirable from the point of lowering of focal depth (~10 times) needed to be serviced by capturing optics, however. Also, the positron production efficiency is higher for heavier materials. All together this gives ~50% higher yield for W compared with Ti.

E-166 PREFERRED W TARGET

↓ Moving target --- TEMPERATURE IN A TARGERT---Stationary target ↓

DISTRIBUTION OF TEMPERATURE IN TARGET T(R,Z) DEG PER 10¹³ INITIAL ELECTRONS

DELTA R = .012 cm, DELTA Z = .003 cm

DISTRIBUTION OF TEMPERATURE IN TARGET T(R,Z) DEG PER 10^13 INITIAL ELECTRONS

DELTA R = .012 cm, DELTA Z = .003 cm

R−►										R−►									
.000	.002	.005	.005	.002	.001	.000	.000	.001	.000	.000	.366	.891	.766	.294	.231	.000	.000	.110	. 000
.365	.276	.205	.168	.110	.003	.000	.002	.000	. 000	61.159	46.252	34.342	28.174	18.390	.567	.000	.275	. 000	.000
.630	.589	.400	.335	.208	.009	.000	.000	.000	.000	105.617	98.783	67.078	56.238	34.923	1.450	.000	.000	.000	.000
.804	.866	.643	.526	.347	.015	.000	.000	.000	.000	134.738	145.274	107.852	88.149	58.141	2.573	.025	.000	.000	.050
.996	1.144	.844	.708	.439	.023	. 000	.000	.000	.000	166.932	191.743	141.460	118.791	73.655	3.934	.000	.000	.000	.000
1.350	1.308	1.092	.853	.550	.041	.000	.000	.000	.000	226.272	219.360	183.026	143.001	92.135	6.916	. 000	.070	.000	.000
1.756	1.601	1.381	1.003	.631	.059	.000	.000	.000	.000	294.366	268.408	231.499	168.095	105.857	9.946	.000	.000	.000	.000
2.041	1.888	1.566	1.090	.720	.083	.001	.000	.000	.000	342.125	316.534	262.530	182.721	120.720	13.948	.231	. 000	.000	. 000
2.200	2.169	1.756	1.234	.826	.100	.002	.000	.000	.000	368.868	363.671	294.349	206.862	138.410	16.831	.295	. 000	.000	.000
2.539	2.410	1.884	1.418	.882	.131	.004	.000	.000	.000	425.653	404.083	315.942	237.827	147.805	22.008	.662	. 000	.046	.000
2.765	2.504	2.116	1.522	.970	.164	.006	.000	.000	.000	463.673	419.850	354.846	255.157	162.570	27.548	1.023	. 000	.000	.000
2.889	2.745	2.174	1.598	1.046	.184	.011	.000	.000	.000	484.464	460.318	364.562	267.948	175.372	30.790	1.784	. 000	.000	.000
3.405	2.935	2.336	1.676	1.141	.215	.014	.001	.000	.000	570.879	492.064	391.750	280.971	191.264	36.087	2.275	.246	.000	. 000
3.445	3.031	2.486	1.734	1.180	.221	.019	.003	.000	.000	577.650	508.118	416.767	290.663	197.778	37.072	3.208	.565	.000	.000
3.630	3.099	2.709	1.879	1.282	.255	.024	.003	.000	.000	608.652	519.617	454.206	314.976	214.973	42.696	4.064	.570	.000	.000
3.804	3.366	2.830	2.012	1.255	.304	.036	.001	.001	.000	637.811	564.410	474.500	337.353	210.375	50.997	6.041	.131	.123	.000
3.820	3.389	2.844	2.121	1.300	.313	.042	.002	.001	.000	640.545	568.291	476.761	355.608	218.024	52.550	7.114	.349	.242	.000
3.997	3.618	2.998	2.189	1.402	.311	.060	.005	.001	. 000	670.182	606.625	502.650	367.037	235.150	52.199	10.080	.839	.119	. 000
3.872	3.878	3.013	2.248	1.475	.331	.075	.008	.001	.001	649.275	650.198	505.209	376.906	247.331	55.479	12.514	1.405	.182	.105
4.001	4.074	3.173	2.340	1.531	.363	.068	.012	.000	. 000	670.760	683.094	532.002	392.349	256.708	60.871	11.425	2.056	.054	.000
4.115	4.137	3.271	2.485	1.543	.398	.076	.016	.001	.000	689.872	693.557	548.392	416.580	258.708	66.692	12.724	2.675	.251	.000
4.245	4.110	3.366	2.621	1.583	.453	.078	.024	.003	. 000	711.817	689.077	564.338	439.400	265.416	75.893	13.020	4.029	.506	.000
4.678	4.128	3.461	2.563	1.694	. 481	.086	.023	. 005	. NNN	784.330	692.138	580.342	429.650	284.009	80.706	14.401	3.933	.756	.000
4.814	4.149	3.584	2.633	1.698	-524	- 097	.018	. 007	- NNN	807.120	695.661	600.961	441.406	284.761	87.820	16.322	3.081	1.119	.000
4.803	4.301	3.690	2.614	1.685	.543	.117	.026	. 006	. NNN	805.369	721.066	618.735	438.359	282.589	91.042	19.697	4.382	1.046	.000
5.067	4.599	3.619	2.682	1.803	-547	.138	.026	. 007	.001	849.548	771.024	606.704	449.717	302.273	91.773	23.204	4.288	1.116	.221
4.838	4.644	3.660	2.743	1.800	.569	.141	.039	. 005	.003	811.220	778.575	613.700	459.937	301.816	95.389	23.658	6.522	.875	. 459
4.777	4.696	3.764	2.846	1.845	-586	.164	.045	. 008	.003	800.987	787.428	631.179	477.260	309.269	98.307	27.423	7.545	1.324	.502
4.601	4.571	3.884	2.951	1.909	-586	.174	.046	.010	.004	771.494	766.389	651.142	494.839	320.040	98.310	29.215	7.787	1.658	.727
4.773	4.570	3.850	2.987	1.909	-587	.209	.050	.012	.004	800.309	766.280	645.544	200.830	320.038	98.435	35.071	8.403	2.057	.715
4.615	4.601	3.955	2.980	1.953	- 589	.199	.048	.017	. 000	773.733	771.435	663.186	499.719	327.486	98.805	33.397	8.063	2.785	.939
4.778	4.607	3.771	3.077	1.788	-620	.206	.000	-023	- 005	801.143	772.357	669.241	519.308	333.390	103.875	34.529	10.058	3.871	.858
4.536	4.540	4.047	3.020	1.992	.047	-177	.071	.022	.008	760.605	762.134	678.826	506.274	333.931	108.824	33.058	11.834	3.699	1.287
4.564	4.675	3.770	3.130	1.744	- 660	.210	.072	.021	.010	765.209	787.192	666.652	524.772	325.880	110.589	36.224	12.129	3.596	1.695
4.347	4.703	3.710	3.104	2.030	.073	- 210	.075	.020	.007	762.684	798.661	656.878	530.469	340.428	112.829	35.192	12.593	4.199	1.521
4.400	4.773	3.740	3.034	2.070	-077	.220	.007	- 04 (- 000	738.784	800.172	661.873	511.769	347.102	117.257	36.807	14.967	4.447	1.385
4.773	4.000	3.777	3.003	2.000	.700	. 437	.002	.020	.007	803.648	786.068	667.178	513.551	346.673	118.341	39.750	13.728	4.368	1.527
1 000	4 700	J 000	2 101	2.001	- 711	- 437 9/E	.000	.033	.000	804.455	774.443	662.102	507.171	347.473	117.208	40.148	14.402	5.010	1.337
4 946	4 599	4 040	2 124	2.000	- 777	- 410	.070	.030	.011	810.847 DOG E41	803.171	686.244	520.007	347.774	125.541	41.145	10.020	0.374	1.030
4 563	4 692	4 043	3 169	2 004	749	286	007	034	013	770.341	707.371	070.047 677 01E	545.540	347.470 33E 0(E	125.075	42.200	16 246	0.430 E 94E	2.077
4 610	4 854	4 076	3 145	2.001	787	286	107	037	017	703.124	010.700	011.010	531.407 E95 34E	333.703	123,030	40.000	10.040	0.710	2.203
4 703	4 731	4 053	3 276	2 035	765	200	117	044	011	700 (17	010.000	600.400 600 EOE	547.343	343.070	100 007	47.700	10 (10	0.414	4 70
4 918	4 692	4 151	3 213	2 095	777	282	130	043	012	700.017 004 E00	706 694	COE 000	547.400	341.132	120.322	40.447	21 017	7.300	1 001
5 080	4 635	4 091	3 223	2 105	809	307	135	043	015	021.323	700.041	COE 049	EAR 211	351.347	100.270	E1 E90	27.010	5 206	1.701 0 ADE
4 997	4 797	4 176	3 189	2 117	798	326	140	Ø41	017	001.707	904 250	700 175	570.311	JJ4.141	100.071	51.540	22.700	6 000	0 000
4 898	4 821	4 066	3 165	2 101	792	296	133	046	Ø21	921 201	001.230	691 701	534.071	252 225	100 775	40 690	23.113	7 706	2.025
4.679	4.969	4.171	3.156	2.094	762	319	132	053	N21	784 468	833 114	699 302	529 240	351 133	127 829	53 541	22 193	8 837	3 469
4.523	5.009	4.138	3.187	2.137	782	319	.123	063	.020	758 353	839 836	693 726	534 303	358 301	131 182	53 518	20 638	10 598	3 311
4.538	4.797	4.185	3.277	2.138	.764	316	.131	.064	.024	760 916	804 293	701 618	549 469	358 503	128 069	53 013	21 894	10.570	4 053
4.531	5.012	4.166	3.228	2.116	.781	.319	.142	.062	.022	759 666	840 416	698 492	541 247	354 832	130,926	53 415	23 809	10.373	3.694
4.705	4.771	4.190	3.206	2.133	.786	.308	.146	.058	.023	788 896	799 929	702 600	537 479	357 705	131.744	51 558	24 539	9,651	3 926
5.104	4.749	4.259	3.182	2.099	.788	.312	.134	.059	.024	855, 792	796 170	714.141	533 448	351 962	132,154	52.366	22 490	9.896	3,961
5.189	4.636	4.317	3.128	2.129	.817	.313	.134	.063	.023	869,960	777 358	723 870	524 532	356 965	137 057	52 398	22 537	10.522	3 891
5.185	4.620	4.330	3.140	2.153	.825	.303	.138	.057	.028	869 400	774 687	725 933	526-515	361 019	138 362	50.265	23.213	9.591	4.755
5.079	4.663	4.286	3.128	2.091	.823	.322	.134	.061	.029	851.572	781.763	718.550	524.466	350.632	137,991	53.952	22.394	10.235	4.802
	-0	1 A · E	ff_1	50.	Effn-	-670/	·Do				ab = 1	omil	und	-17(m· 1		201/	Q	
r	<u>-U.4</u>	+4, C		.00,	⊏nb-	-0170), RU	,011-(J.UØ,	, Lall	1 – UI	UII,L	_unu	-170	лп,		JEV	0	

Each particle radiates 1.07 GeV in undulator

TEMPERATURE ALONG THE **W** TARGET FOR DIFFERENT RADIUSES

per 10¹³ initial electrons; spinning target

Each particle radiates 2.76 GeV in undulator

The negative pressure phenomenon confirmed here

ILC_Target_with _pressure: Cycle=10264 Time= 1.0000e-10 dt= 8.6496e-15 P3 Nodes=1500 Cells=394 RMS Erre ! sigmar= 0.250000 sigmaz= 0.050000 Surf_Integral= -9.271943

Pressure along the target; beam passed from the left to the right 0.1 ns ago 10

LITHIUM LENS BASICS

If steady current *I* runs through the round conductor having radius *a*, its azimuthal magnetic field inside the rod could be described as

$$H_{g}(r) = \frac{0.4\pi lr}{2\pi a^2}$$

where magnetic field is measured in *Gs*, *a* –in *cm*, *I* –in Amperes. Current density comes to $j_s = I / \pi a^2$ The particle, passed through the rod, will get the transverse kick

This picture drawn for the focusing of electron beam to the target

So the focal distance could be defined as the following

11

First of all, how important is the lens for the collection business?

Efficiency of positron production normalized to the primary electron as function of feeding current in a lens. K=0.9, 100m long undulator, lens is 0.5 cm-long, ϵ `6MeV-cm.

One can see that LL potentially adds ~70% of positrons. But even without lens efficiency is more than one already.

T.A.Vsevolojskaja, A.A.Mikhailichenko, G.I.Silvestrov, A.D.Cherniakin

"To the Conversion System for Generation of Polarized Beams in VLEPP", BINP, 1986

Field measured in liquid Gallium model.

A-cylindrical lens with homogenous current leads supply at the end

- B- conical lens with the same current feed
- C –lens with cylindrical target at the entrance flange

1-ex-centric contact pushers;2-conic lens body; 3-W target; 4-Ti tubing for LI supply; 5-flat current leads; 6-vacuum chamber; 7-coaxial fraction of current leads; 8-bellows; 9-ceramic insulators; 10-conical gasket; 11-set of ex-centric pushers.

Doublet of Solid Lithium lenses in Novosibirsk BINP

Photo- courtesy of Yu Shatunov

First lens is used for focusing of primary 250 MeV electron beam onto the W target, Second lens installed after the target and collects positrons at ~150MeV

Number of primary electrons per pulse ~ $2\cdot10^{+11}$; ~0.7Hz operation (defined by the beam cooling rate in a Damping Ring)

Lenses shown served ~30 Years without serious problem (!)

Lens with liquid Lithium for ILC last generation with classic collet clamp

Lithium Lens for ILC positron source; extended flanges serve for electrical contact. 1–volume with Lithium, 2–window (Be/BC/BN), 3–electrical contacts with caverns for Li, 4–tubing for Lithium in/out. At the left-the latest variant with collet contacts.¹⁵

THE CONCEPT

The gamma beam is coming from the left. By arrows it is shown the liquid Lithium flow.

To the choice of material for windows

•		14	ore r. proper	ties of Littine	m, L, L, L,	DC, DN, W
	Units	Li	Be	BN	B_4C	W
Atomic number, Z	1-1	3	4	5/7	5/6	74
Yong modulus	\underline{GPa}	4.9	287	350-400	450	400
Density, p	$[g/cm^3]$	0.533	1.846	3.487	2.52	19.254
Specific resistance	Ohm-cm	1.44 x10 ⁻⁵	1.9 x10 ⁻⁵	>1014	7.14 x10 ⁻³	5.5 x10 ⁻⁶
Length of Xo, <u>IXo</u>	ст	152.1	34.739	27.020	19.88	0.35
Boil temperature	$\overset{\circ}{\mathbb{C}}$	1347	2469	Sublim. at melt	3500	5660
Melt temperature	$\underline{\circ}C$	180.54	1287	2973	2350	3410
Compressibility	cm²/kg	8.7 x10 ⁻⁶	9.27 x10 ⁻⁷			2.93 x1.97
Grüneisen coeff.	=					2.4
Speed of sound (long)	m/sec	6000	12890	16400	14920	5460
Specific heat	$J/g^{\circ}K$	3.6	1.82	1.47	0.95	0.134
Heat conductivity	W/cm/°C	0.848	2	7.4	0.3-0.4	1.67
Thermal expansion	1/ <u>°C</u>	4.6 x 10 ⁻⁶	11x10 ⁻⁶	2.7 x 10 ⁻⁶	5 x 10 ⁻⁶	4.3x10 ⁻⁶

Table 1: properties of Lithium, Li¹, Be, BC, BN, W

¹ Total mass of Lithium in $\sim 70 kg$ human body is $\sim 7 mg$.

Axis

Variants of current duct

A.Mikhailichenko," Lithium Lens (I)", CBN -09-4, Aug 2009, 17pp. <u>http://www.lepp.cornell.edu/public/CBN/2009/CBN09-4/CBN%2009-04.pdf</u> A.Mikhailichenko," Lithium Lens (II)", CBN -10-3, Aug 2010, 37pp

http://www.lepp.cornell.edu/public/CBN/2010/CBN10-3/CBN%2010-03.pdf

Beam pattern in ILC

Equation for thermal diffusion in window

$$\nabla(k\nabla T) + \dot{Q} = \rho c_V \dot{T}$$

defines time of relaxation from its characteristic

$$\frac{dx^2}{k} = \frac{dt}{\rho c_V} \rightarrow \delta^2 = \frac{k}{\rho c_V} \tau \rightarrow \tau = \frac{\rho c_V}{k} \delta^2$$

For W: $k=1.67 \text{ W/cm/^{o}K}$, $\rho=19g/cm^{3}$, $c_{V}=0.13 \text{ J/g/^{o}K}$

lf

$$\delta \sim 1/2X_0/2 \sim 0.09 cm$$
 $\tau = \frac{19 \cdot 0.13}{1.67} 8 \cdot 10^{-3} \cong 12 ms$

This gives \sim 20% temperature drop even within a train for W; To the next train the target will be cool

Can W survive as a flange?

The gamma spot size should be increased.

This reduces performance of system slightly

Beam energy, GeV	100	150	250
Length of undulator, m	220	170	170
K factor	0.66	0.36	0.28
Period of undulator, cm	1	1	1
Distance to the target, m	200	350	600
Thick. of target/X _o	0.55	0.57	0.6
Radius of lens, cm	0.6	0.6	0.6
Gradient, kG/cm	60	60	65
Length of the lens, cm	0.7	0.7	0.7
Current, kA	108	108	117
Radius of collimator, cm	0.2	0.5	0.15
Rad, of irises in RF, cm	3	3	3
Rad of coll. before RF, cm	2	2	2
Acceptance, MeVxcm	9	9	9
Energy filter E>, MeV	51	54	63
Energy filter E<, MeV	110	110	180
ΔT per train 10^13 e-, °C	172	139	270
ΔT in lens from beam, $^{\circ}C$	18	35	80
ΔT in lens from current, °C	90	90	100
Efficiency, e+/e-	1.52	1.57	1.52
Polarization , %	54	57	64

Calculations with KONN for combined targetlens system

DISTRIBUTION OF TEMPERATURE IN TARGET T(R,Z) DEG PER 10^13 INITIAL ELECTRONS

DELTA R = .100 cm, DELTA Z = .003

_	A	4	-	.003 CM	

K-F	000	050	000	000	000	000	000	000	000
. 235	. 058	. 452	. 029	. 008	. 000	. 000	. 000	. 000	. 000
6.592	2.014	. 261	.215	. 030	.000	. 999	. 000	. 999	. 999
13.749	3.83/	1.035	. 269	.037	.002	. 666	. 000	. 999	. 999
20.876	5.906	1.442	. 358	.049	.003	.000	.000	.000	.001
27.293	7.469	1.787	. 430	.050	.001	.000	.000	.000	. 000
33.856	8.906	2.137	. 554	.052	.001	. 000	. 000	. 000	. 000
40 311	10 746	2 375	441	a57	002	āāā	001	āāā	āāā
46 166	12 224	2 259	468	074	.000	. 000	iããã	. 000	. 000
52.200	15.851	5.744	- 200	. 071	. 000	.000	- 000	. 000	. 000
24.200	12.004	5 191	. 202	.0/1	.000	.000	.000	.000	. 000
20.343	10.202	3.131	· <u>468</u>	. 092	.002	.000	.000	.000	. 000
62.970	10.460	3.190	. 232	.078	.001	. 000	. 000	. 000	. 000
69.451	17.524	3.336	.521	.0/8	.000	.000	. 000	. 999	. 000
/4.916	18.902	3.393	. 545	.069	.000	.000	.000	.000	.000
80.208	19.916	3.545	.578	.055	.002	.000	.000	.000	.000
84.527	21.011	3.488	. 527	.063	.000	.000	.000	.000	. 000
88.748	21.928	3.783	. 512	.075	.002	.000	. 000	. 000	. 000
92.353	22.408	3.883	550	065	. 000	. 001	.001	. 001	. 000
94 915	23 443	3 867	565	ă79	āāā	้ดัดดี	ăăā	้ดัดดี	āāā
99 002	24 254	3 720	648	076	001	· ÃÃĂ	iããã	· ÃÃĂ	iããã
102 001	55.050	5.468	-242	. 074	- 001	- 000	- 000	- 000	- 000
104 417	22.000	3.220	. 965	. 070	.007	.000	.000	.000	. 000
100.41/	23.413	3.881	· /23	.070	.002	.000	.000	.001	. 000
109.492	26.200	4.237	. 626	. 083	.000	.000	. 000	.000	. 666
110.164	26.845	4.2/8	. 786	.0/4	.002	.001	. 000	.001	. 003
111.591	27.393	4.305	. 700	.082	.002	. 000	.000	. 000	. 000
113.612	27.909	4.458	.642	.068	.004	.000	.000	.000	.000
117.205	28.815	4.362	.722	.079	.000	.000	.000	.000	. 000
118.554	28.310	4.281	. 682	.071	.000	.000	.000	.000	.000
121.218	28.765	4.453	. 627	056	. 000	. 000	. 000	. 000	. 001
124 277	29 619	4 423	693	065	āāā	āāā	aãa	āāā	้ดัดดี
125 420	29 749	4 420	665	071	ØØ1	iããã	iããã	iããã	iããã
126 965	20 252	4 629	- 676	063	000	. 000	. 000	. 000	. 000
120.525	20.251	7.625	- 918	. 0000	001	.000	. 000	. 000	. 000
100 000	30.201	4.200	. 448	.0/2	.001	.000	.000	.000	. 000
133.000	20.40/	7.007	. /03	· 293	.001	.000	.000	.000	. 000
134.190	30.128	4.020	. 634	.077	.004	.000	.000	.000	. 000
134.112	30.133	4.804	.62/	.082	.001	. 000	. 000	.000	. 666
137.664	30.516	4.536	. 626	.092	.001	. 666	. 000	. 999	. 999
135.460	30.85/	4.546	.5/8	.084	.001	. 000	.000	. 000	.000
136.409	31.313	4.560	.621	. 084	.001	.000	.000	.000	.000
137.035	31.271	4.628	.637	. 090	.001	.000	.000	.000	. 000
137.189	31.546	4.458	. 580	.066	.002	.001	.000	.000	. 000
139.529	31.545	4.450	. 627	.062	.004	.000	.000	.000	.000
137.976	31.900	4.377	. 597	.070	.001	. 000	. 000	. 000	. 000
138 591	31,851	4 491	672	097	001	aaa	aãa	ada	aaa
137 451	32 331	4 587	654	059	664	662	ăăă	ăăă	ăăă
126 092	32 344	4 629	662	076	· ããa	. 000	. 000	. 000	. 000
120 052	35.343	1.750	- 705	. 643	- 000	- 666	- 000	- 666	. 000
120 022	36.201	1 600	- 700	. 000	. 000	.000	. 000	.000	.000
141 000	36.331	4.230	- 798	. 293	.000	.000	.000	.000	.000
141. 202	32.200	7.242	• 447	.0/3	.000	.000	.000	.000	. 000
137.372	32.793	4.3/9	· 415	. 8/1	.000	. 000	.000	. 000	.000
137.399	33.342	4.304	./19	. 049	. 999	. 000	. 999	. 000	. 000
139.043	33.594	4.455	.642	.079	.001	. 000	. 000	. 000	.000
137.162	33.563	4.394	.614	. 084	.000	.000	.000	.000	. 000
139.080	33.431	4.642	.622	. 059	.001	.000	.000	.000	.000
137.594	33.161	4.659	.622	.066	.001	.000	.000	.000	. 000
138.674	33.314	4.680	.601	. 086	001	. ØØØ	. 000	. 000	ŌŌŌ
139 470	33 391	4 709	630	066	้ดีดีดี	ĨÃÃĂ	ĨÃÃĂ	ĨÃÃĂ	ĨÃÃĂ
20011/0	001071					.000			

23

CONCLUSIONS

- As the target is not in motion, the optimization carried for reduction of the temperature jump in a target.
- This reduces overall parameters of the system slightly, compared with moving target; Still efficiency 1.5 can be reached, polarization slightly lower~60%
- Dependence of positron yield as function of Be window thickness is pretty monotonic. Be windows of up to 5 mm thick is possible. Usage of BC, BN windows allow have them thinner.
- This type of lens/Target combined device might be recommended for the CLIC-type collider as in this case the power consumption in the target is minimal and polarization can be restored for ~70% again.

BACKUP SLIDES

If all other parameters are kept fixed, then efficiency of conversion as a function of longitudinal magnetic field around accelerating structure looks like:

Pretty moderate field indeed

Undulator bypass line

Very high density of SR in any bending magnet, as emittance is extremely small

T.A.Vsevolojskaya, A.A.Mikhailichenko, G.I Silvestrov, A.N. Cherniakin, "*To the Project of Conversion System for Obtaining Polarized Beams at VLEPP Complex*", internal report BINP, Novosibirsk, 1986.

Scaled view on vacuumed feed through and lens; vacuum case not shown

Feeding voltage composed with three odd harmonics 1,3,5

Viscose flow Jan 4 2010: Cvcle=160 Time= 4.5531e-3 dt= 2.6118e-5 P2 Nodes=17741 Cells=12198 RMS Err= 0.0615

Voltage applied

$$U(t) = U_0 \cdot \left[-4.5 \cdot Sin(\frac{\pi \cdot (t - \tau/10)}{\tau}) - 0.9 \cdot Sin(\frac{3\pi \cdot (t - \tau/10)}{\tau}) - 0.17 \cdot Sin(\frac{5\pi \cdot (t - \tau/10)}{\tau})\right]$$

Filling positron ring from electron source

Additional "keep alive" source not required

Fragment from the publication of Balakin-Mikhailichenko, Budker INP 79-85, Sept. 13, 1979.

Sircularly polarized photons are pro-

duced in helical fields of minimal period. Much more interesting is to obtain such fields with the help of the usual helical static fields and the electromagnetic waves. It may well be that the method of gamma production in helical crystals can be useful in future.

Scattering on the Laser radiation is the same process as the scattering on the electromagnetic wave.

One comment about helical crystals first .

Helical (chiral) crystals

Crystal structure MnSi and FeGe

P.Bak, M.H.Jensen, J.Phys.C: Solid St.Physics, 13,(1980) L881-5

Helical structure demonstrates also CsCuCl₃, Ba₂CuGe₂O₇, MnS₂

Laser bunch as an undulator

The number of the quantas radiated by an electron by scattering on photons - real from the laser or virtual from the undulator:

$$N_{\gamma} \cong 4\pi\alpha \frac{L}{\lambda_{u}} \frac{K^{2}}{1+K^{2}} = 4\pi \frac{e^{2}}{\hbar c} \frac{L}{\lambda_{u}} \left(\frac{eH\lambda_{u}}{2\pi mc^{2}}\right)^{2} \approx \left(\frac{e^{2}}{mc^{2}}\right)^{2} \frac{L\lambda_{u}}{2\pi\hbar c} H^{2} \cong r_{0}^{2} L \frac{H^{2}}{\hbar\Omega} \cong \sigma_{\gamma} n_{\gamma} L$$

 $K = eH\lambda_{u} / 2\pi mc^{2} \cong 0.934 \cdot H[T] \cdot \lambda_{u}[cm] \quad K = \beta_{\perp}\gamma \quad \sigma_{\gamma} \cong \pi r_{0}^{2} \quad n_{\gamma} \cong \frac{H^{2}}{\hbar\Omega} \qquad \Omega = \frac{2\pi c}{\lambda_{u}}$ Formation length in undulator $l_{f} \cong \lambda_{u}$ *L*- length of undulator

$$N_{\gamma} \cong L/\sigma_{\gamma} n_{\gamma} = L/l_{\gamma}$$
 $l_{\gamma} \cong 1/\sigma_{\gamma} n_{\gamma}$ – Length of interaction

Written in this form it is clear that the photon back scattering (especially with 90° crossing angle) is an equivalent of radiation in an undulator (as soon as the photon energy is much less, than the energy of particle).