N³LL Analysis of Thrust Distribution: Determination of $\alpha_s(M_Z)$

Riccardo Abbate Massachusetts Institute of Technology ALCPG11 Eugene, OR March 20, 2011

R.A., M. Fickinger, A. Hoang, V. Mateu, I.Stewart arXiv:1006.3080[hep-ph]

Massachusetts Institute of Technology

Outline

Motivation

In the current world average of $\alpha_s(m_Z)$, values coming from event shapes observable have a sizable error. With our theory and the available data, we can obtain a much more precise value for $\alpha_s(m_Z)$

Thrust analysis

We provide, for the first time, a rigorous treatment of power corrections defined in Field Theory which is consistent over the whole thrust distribution.

Application for a Future Linear Collider At high center of mass energy, $\alpha_s(m_Z)$ is more sensitive to experimental uncertainties, but non perturbative effects become less important

Motivations

$e^+ e^- \xrightarrow{Q} \text{jets}$			Thrust	$\longleftrightarrow \overbrace{f}$
$T = \max_{\hat{\mathbf{t}}} \frac{\sum_i \hat{\mathbf{t}} \cdot \vec{p_i} }{Q}$			$\tau = 1 - T$	$\tau = 0$
Experiment Q values (GeV)				
	LEP	ALEPH	$\{91.2, 133.0, 161.0, 172.0, 183.0, 189.0, 200.$.0,206.0}
		DELPHI	{45.0,66.0,76.0,91.2,133.0,161.0,172.0,183.0, 189.0,192.0,196.0,200.0,202.0,205.0,207.0}	
		OPAL	{91.0,133.0,161.0,172.0,177.0,183.0,189.0,197.0}	
		L3	$\{41.4,55.3,65.4,75.7,82.3,85.1,91.2,130.1,161.3,172.3,182.8,188.6,194.4,200.0,206\}$	1,136.1, .2}
	SLAC	SLD	{91.2}	
	DESY	TASSO	{14.0,22.0,35.0,44.0}	
		JADE	{35.0,44.0}	
	KEK	AMY	{55.2} ₅	

Law with the state of the state

Provide State

Thrust

Thrust Analysis

$e^+ e^- \xrightarrow{Q} \text{jets}$ Factorization Theorem for Thrust

AFHMS (or Viv: 1006 2020)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \int \mathrm{d}k \left(\frac{\mathrm{d}\hat{\sigma}_{\mathrm{s}}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{\mathrm{ns}}}{\mathrm{d}\tau} + \frac{\Delta \mathrm{d}\hat{\sigma}_{b}}{\mathrm{d}\tau} \right) \left(\tau - \frac{k}{Q}\right) S_{\tau}^{\mathrm{mod}}(k - 2\bar{\Delta}) \times \left[1 + \mathcal{O}\left(\alpha_{s} \frac{\Lambda_{\mathrm{QCD}}}{Q}\right) \right]$$

Factorization Theorem for Thrust $e^+ e^- \xrightarrow{Q} \text{jets}$

AFHMS (arXiv:1006.3080)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \int \mathrm{d}k \left(\frac{\mathrm{d}\hat{\sigma}_{\mathrm{s}}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{\mathrm{ns}}}{\mathrm{d}\tau} + \frac{\Delta \mathrm{d}\hat{\sigma}_{b}}{\mathrm{d}\tau} \right) \left(\tau - \frac{k}{Q} \right) S_{\tau}^{\mathrm{mod}} (k - 2\bar{\Delta}) \times \left[1 + \mathcal{O}\left(\alpha_{s} \frac{\Lambda_{\mathrm{QCD}}}{Q} \right) \right]$$

$$\frac{d\hat{\sigma}_s}{d\tau} = \sum_n \alpha_s^n \,\delta(\tau) + \sum_{n,l} \alpha_s^n \left[\frac{\log^l \tau}{\tau}\right]_+ \\ = H(\mu_H) \times J(\mu_J) \otimes S(\mu_S)$$

singular partonic cross for massless quarks, QCD+QED final states

resummation for singular partonic Becher Schwartz '08

on for
artonic
$$\ln \frac{d\sigma}{dy} = (\alpha_s \ln)^k \ln + (\alpha_s \ln)^k + \alpha_s (\alpha_s \ln)^k + \alpha_s^2 (\alpha_s \ln)^k + \dots$$

wartz '08 $y = FT(\tau)$ LL NLL NNLL N³LL
9

Factorization Theorem for Thrust $e^+ e^- \xrightarrow{Q} \text{jets}$

AFHMS (arXiv:1006.3080)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \int \mathrm{d}k \left(\frac{\mathrm{d}\hat{\sigma}_{\mathrm{s}}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{\mathrm{ns}}}{\mathrm{d}\tau} + \frac{\Delta \mathrm{d}\hat{\sigma}_{b}}{\mathrm{d}\tau} \right) \left(\tau - \frac{k}{Q} \right) S_{\tau}^{\mathrm{mod}} (k - 2\bar{\Delta}) \times \left[1 + \mathcal{O} \left(\alpha_{s} \frac{\Lambda_{\mathrm{QCD}}}{Q} \right) \right]$$
$$\frac{d\hat{\sigma}_{\mathrm{ns}}}{\mathrm{d}\tau} = \sum_{n,l} \alpha_{s}^{n} \log^{l} \tau + \sum_{n} \alpha_{s}^{n} f_{n}(\tau)$$

nonsingular partonic: fixed order - singular = non singular

$e^+ e^- \xrightarrow{Q} \text{jets}$ Factorization Theorem for Thrust

A FUNIC (anVin 1006 2000)

$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \int \mathrm{d}k \left(\frac{\mathrm{d}\hat{\sigma}_{\mathrm{s}}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{\mathrm{ns}}}{\mathrm{d}\tau} + \frac{\Delta \mathrm{d}\hat{\sigma}_{b}}{\mathrm{d}\tau} \right) \left(\tau - \frac{1}{2}\right)$	$-\frac{k}{Q} \int S_{\tau}^{\text{mod}} (k-2\bar{\Delta}) \times \left[1 + \mathcal{O}\left(\alpha_s \frac{\Lambda_{\text{QCD}}}{Q}\right) \right]$
	11

Non Perturbative Effects

In the tail region, where $\ell_{\text{soft}} \sim Q \tau \gg \Lambda_{QCD}$ the soft function can be expanded as $S_{\tau}(Q\tau,\mu) = \int dk' S_{\text{part}}(Q\tau-k',\mu) S_{\tau}^{\text{mod}}(k') = S_{\text{part}}(Q\tau,\mu) - S'_{\text{part}}(Q\tau,\mu) 2\Omega_1 + \dots$ $= S_{\text{part}}(Q\tau-2\Omega_1,\mu) + \dots$ the distribution shifts!

Factorization Theorem for Thrust $e^+ e^- \xrightarrow{Q} \text{jets}$

AFHMS (arXiv:1006.3080)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \int \mathrm{d}k \left(\frac{\mathrm{d}\hat{\sigma}_{\mathrm{s}}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{\mathrm{ns}}}{\mathrm{d}\tau} + \frac{\Delta \mathrm{d}\hat{\sigma}_{b}}{\mathrm{d}\tau} \right) \left(\tau - \frac{k}{Q} \right) S_{\tau}^{\mathrm{mod}}(k - 2\bar{\Delta}) \times \left[1 + \mathcal{O}\left(\alpha_{s} \frac{\Lambda_{\mathrm{QCD}}}{Q} \right) \right]$$

- $\mathcal{O}(\alpha_s^3)$ fixed order (non singular). Event $\mathcal{O}(\alpha_s^2)$ and EERAD $\mathcal{O}(\alpha_s^3)$
- $\mathcal{O}(\alpha_s^3)$ matrix elements. Axial singlet anomaly. Full hard function at 3 loops
- Resummation at N^3LL . Effective field theory (SCET)
- Correct theory in peak, tail and multijet regions (profile functions)
- Field theory matrix elements for renormalon-free power corrections
- QED effects in Sudakov and FSR at NNLL+ $\mathcal{O}(\alpha_s^2)$ with $\alpha \sim \alpha_s^2$
- Bottom mass corrections with factorization theorem
- Computation of bin cumulants in a meaningful way

Why a global fit? (Many Q values)

14

We fit for $\alpha_s(m_Z)$ and Ω_1 simultaneously.

At a single Q, a variation in $\alpha_s(m_Z)$ can always be compensated be a variation in Ω_1 , the two parameters are strongly degenerate

Why a global fit? (Many Q values)

We fit for $\alpha_s(m_Z)$ and Ω_1 simultaneously.

Fitting multiple Q, we can break the degeneracy!

Power correction needed at 20% accuracy to get $\alpha_s(m_Z)$ at the 1% level

 $\alpha_s(m_Z)$ from global thrust fits

Leading power correction estimation

 $\alpha_s(m_Z)$ from global thrust fits

 $\alpha_s(m_Z)$ from global thrust fits

Convergence of results

 Ω_1 determined to 16% accuracy

500-points random scan per order

Largest contribution to perturbative uncertainty comes from variation of profile parameters

Convergence of results

 $\frac{\chi^2}{dof} = \frac{440}{485} = 0.91$ "Standard" dataset $Q \ge 35 \text{ GeV}$ $\frac{6 \text{ GeV}}{Q} \le \tau \le 0.33$ 487 bins

Correlations treated with the minimal overlap model

 $\alpha_s(m_Z) = 0.1135 \pm 0.0002_{\text{exp}} \pm 0.0005_{\text{had}} \pm 0.0009_{\text{pert}}$

Final thrust results

$$\alpha_s(m_Z) = 0.1135 \pm 0.0002_{\text{exp}} \pm 0.0005_{\text{had}} \pm 0.0009_{\text{pert}}$$

Applications for a Future Linear Collider

LEP accuracy

ALEPH, DELPHI, L3

 $\frac{1}{\sigma} \frac{d\sigma}{d\tau}_{_{2.0}}^{^{2.5}}$

1.5

1.0

0.5

0.0

Experimental accuracy $\sim 1\%$ $\sigma_{\rm syst}$ dominates over $\sigma_{\rm stat}$ Experimental accuracy $\sim 10\%$ $\sigma_{\rm stat}$ dominates over $\sigma_{\rm syst}$

0.20

0.15

Theory binned as

 $\frac{\text{DELPHI}}{Q} = 207 \,\text{GeV}$

0.25

0.30

At high energy, LEP data are not very accurate. ILC will provide precise data at Q = 500 GeV(1000 GeV)

Sensitivity to α_s

As an exercise, let's assume we can achieve a 2% experimental accuracy at every Q

Experimental uncertainty on $\alpha_s(m_Z)$ given a 2% experimental accuracy

Sensitivity to α_s

As an exercise, let's assume we can achieve a 2% experimental accuracy at every Q

Most of the effect is due to running of α_s Running from ILC energies to m_Z slightly decreases the accuracy on the determination of $\alpha_s(m_Z)$

The accuracy of the determination of $\alpha_s(Q)$ is roughly constant

Sensitivity to α_s

As an exercise, let's assume we can achieve a 2% experimental accuracy at every Q

Measurement will test the matter content of the QCD β function

Size of nonperturbative effects

40

for increasing Q

- ullet the peak moves toward smaller au
- events tend to accumulate in the region with small au
- tail region becomes larger but less populated

• Size of non perturb. corrections decreases for high values, scaling as $\frac{\Lambda_{\text{QCD}}}{Q}$

ILC outlook

- ILC could provide data with precision comparable to LEP
- Observed strongly interacting new physics particles will be tested in virtual graphs through the evolution of α_s
- At ILC energies, non perturbative effects become less important:
 - possibility to fit higher moments of nonperturbative soft function
 - possibility to expand fit region
- Global fit for $\alpha_s(m_Z)$ and Ω_1 will become more precise

Summary of Global Fits Discussed today

- The Soft-Collinear Effective Theory provides a powerful formalism for deriving factorization theorems and analyzing processes with Jets
- SCET has finally provided theorists with a means to catch up with the experimental precision of LEP. The result of our global fit is $\alpha_s(m_Z) = 0.1135 \pm 0.0002_{\rm exp} \pm 0.0005_{\rm had} \pm 0.0009_{\rm pert}$
- First rigorous field theoretical treatment of nonperturbative effects
- Analysis of other event shape observables is under way! (Heavy Jet Mass)

Backup slides

Uncertainty budget from scan

Uncertainty from higher moments

Statistical error from nonsingular extraction

 $\mathcal{O}(\alpha_s^3)$ unknown. Estimated with Padè

 $\mathcal{O}(\alpha_s^2)$ extracted numerically from EVENT2 with an accuracy of 6.4%

43

