Progress in ILD Tracking SW for the DBD

Steve Aplin DESY

ALCPG 2011 Univ. Orgeon 20th March 2011

- Status
- Plans
- Summary

Steve Aplin ILD Tracking for the DBD

Tracking @ ILC

- Tracking reconstruction goals:
 - Momentum resolution
 - Impact parameter resolution
 - Very high efficiency $\varepsilon > 99\%$
 - Very low material budget

ALCPG 2011

 $\frac{\Delta p}{p^2} < 5 \times 10^{-5} GeV^{-1}$

DBD calls for more realistic detector descriptions

Lol Simulation uses a mixture of realistic and simplified detector descriptions

DBD calls for more realistic detector descriptions

Silicon Trackers have now been revised to bring them up to the same level of realism

SIT, SET & ETD

Alexandre Charpy & Konstantin Androsov(LPNHE)

New Mokka Drivers in ILD_01

ILD Tracking for the DBD

Steve Aplin

FTD and TPC

ILD Track Reconstruction

Full pattern recognition Stand-alone track finding in both Inner Silicon Trackers and TPC Kalman Filter Track Fitting

Tracking Software used in LOI

Steve Aplin ILD Tracking for the DBD

Tracking Software used in LOI

10

Tracking Code rewrite for the DBD

- Leave behind F77 LEP tracking code.
- Rewrite the TPC pattern recognition.
- Use KalTest Kalman Filter fitting library.
- Stand alone track reconstruction for the inner silicon trackers and forward region needs to be addressed so that it can cope with beam related background.

TPC Pattern Recognition

- use NN-Clustering w/ euclidian distance
- cleanup merging regions with pad-row rangesassign leftover hits:
 - based on residual wrt. extrapolation x-ing
 - improved assignment since ILCWS 2010
- working on segment merging
 - based on simple 'circle criterion'
- implemented chi2 for track state comparison

Frank Gaede

KalTest

Kalman Filter fitting library (Keisuke Fuji et al)

Based on Root Structured in sub-libraries

- geomlib -- geometry
- kallib -- Kalman filter
- kaltracklib -- Kalman tracker
- utils -- utilities

Built into one libKalTest.so

User needs to define their detector classes (KalDet)

- TVMeasLayer: meas. layer, coord. to track state transformation
- TVDetector: position of measurement layers and material properties

Included in iLCSoft as of v01-10

Using KalTest within iLCSoft

- need to interface to KalTest Fitter
- would like to have loose coupling between patrec and fitting
- need several iterations between patrec and fitting
- LCIO::Track class not optimal for that (not designed to be)

- Created a Refitting Processor to test development of the Tracking API as well as Track Parameter and error determination in the KalTest implementation
 - Takes Icio Tracks produced by LEPTracking and FullLDCTracking and refits the associated hits using the Kaltest Kalman Filter.
 - Presently fits are compared only at the IP
- Testing performed using a mock up of inner detectors in Mokka.
- Comparison made with Track Parameters and errors determined by F77 LEP fitting code using single muons at p = 3, 6, 40, 100 GeV and theta = 88, 40, 32 degrees

KalTest Track Parameter Pull Distributions

KalTest Track Parameter Pull Distributions

KalTest Track Parameter Pull Distributions

Track Reconstruction in the Fwd Region

Example of a forward region

Winfried Mitaroff HEPHY

Steve Aplin ILD Tracking for the DBD

Track Reconstruction in the Fwd Region

Fwd. track search strategies

- Stand-alone in FTD:
 - This is the only possible strategy in the very forward region,
 - Various algorithms exist which to chose needs careful study,
 - For small
 θ, hits from beamstrahlung-induced background may cause further problems (we need a reliable estimate),
 - Layout for optimized track resolution (e.g. strip orientation and stereo angle) not necessarily optimal for track search.

• Combined TPC–FTD:

- This may be an optional strategy for the intermediate region:
- Inward extrapolation of tracks found by local PR in the TPC, FTD hits tested against and associated to them,
- Timing problems hopefully solved by "time stamps".

Soft hit association:

 Hits may be shared among tracks, and the final association relegated to track reconstruction based on the DAF.

Winfried Mitaroff HEPHY

Summary

- Geant4/Mokka Simulation Models implemented.
- Started work on a Tracking API for use in Marlin.
- So far partially implemented for KalTest and F77 LEP Code.
- The addition of further tracking systems needs the implementation of bounded planar detectors in KalTest.
- Geometry and material budget needs tuning, although everything looks to working well with the new implementations.
- TPC Pat-Rec currently working on merging of tracksegment found.
- Working on improving the diagnostics.

