Status of LCFIVertex: vertex finding, jet clustering and flavor-tagging neural network

Taikan Suehara, Tomohiko Tanabe (The Univ. of Tokyo)

The earthquake

The M9.0 earthquake gives...

Some damage in Tohoku & KEK (worse in J-PARC)
Nearly no damage in Tokyo

None of our facility are affected by the Fukushima accident

but...

...and severe electric power shortage in Tokyo and KEK...

- Electricity in KEK stopped for several days

 Now partially recovered
- Severe power shortage happened in Tepco area (including Tokyo & KEK)
 - Tepco operated Fukushima plants
 - 'Planned periodic power outage' now
 - All power-consuming facilities must be off now
 - Including KEK computing facilities
 - -> We cannot access most of MC data in KEK!
 - Now trying to use GRID...

Topics

- Neural-net optimization (Tomohiko)
 - Reconstruction of LCFI framework
 - Optimization of input variables
 - Results
- New jet clustering for multi-b environment(me)
 - Vertex finder without jet clustering
 - Good vertex selection
 - Jet clustering with vertex information
 - Results

Status of LCFIVertex I: Progress in vertex finding, flavor-tagging neural net framework

Tomohiko Tanabe

Taikan Suehara, Satoru Yamashita (The Univ. of Tokyo)

in this talk

- introduction
- vertex finding improvements

 efficiency increase in the near-IP region
- flavor tagging improvements
 - new variables
 - improved signal/background ratio

motivation

- Many important physics processes have multiple heavy flavor jets
 - Higgs BF: H -> bb, H -> cc
 - Higgs self-coupling: ZHH -> qqbbbb
 - top-Yukawa:ttH -> bWbWbb
 - top physics : tt -> bWbW

Z→qq (70%) II (30%) W→qq (65%) Iv (35%) H→bb (65%) $(m_{H}=120GeV)$

ideal flavor tagging

reconstruct the entire decay chain (b -> c -> s) in a jet

vertex reconstruction is important

- but vertices cannot be made from a single track
 - use track measurements (impact parameter)
- presence of neutral particles
 - missing correction by using p_T
- lepton ID: energetic/isolated leptons is a sign of heavy quark decays
- key is variable combination
 - likelihood, multivariate analysis (e.g. ANN)
 - event categorization (discrete variables)

Tomohiko Tanabe et al., ALCPG11 @ U Oregon, 20 Mar. 2011 page 8

S

LCFIVertex

LCFIVertex is a collection of algorithms for flavor tagging and parton charge identification.

b-likeness c-likeness parton charge

LCFI Collaboration: NIM A 610 (573) [arxiv:0908.3019]

ILD Detector

muon detector hadron calorimeter

em calorimeter

TPC

vertex detector

TPC + VXD are critical for flavor tagging!

beam pipe

Vertex Detector

inner radius	15 mm
outer radius	60 mm
impact parameter resolution	< 5 mm (high momentum)

vertex finding algorithms

topological vertex finder (ZVTOP)

track probability tubes

vertex function: overlapping tubes -high values

- can find vertices for arbitrary topology with any number of tracks (must be separated from the primary vertex)
- it takes lots of CPU time due to having to evaluate the vertex function at many points in space
- <u>tear-down</u>
 - start from a set of tracks, remove tracks which are inconsistent (large chi-squared contribution)
 - if the primary tracks are properly removed, vertices can be found with high efficiency
- <u>build-up</u>
 - using track pairs as seed, attach other tracks
 - good seeds lead to good vertices

ZVTOP + teardown

ZVTOP is not good at vertices near the IP. Teardown is performed using tracks not used by ZVTOP. After quality cuts (dist, chi2, ntrks), we find +3% efficiency increase for the same purity.

rejection of V⁰ particles

- despite having V⁰ taggers in the Marlin reconstruction chain, our vertex finders still find V⁰'s (K_S, Lambda, conversions) for two-track vertices
- we apply the following cuts to reject V⁰'s (reduce uds contamination):
 - cut on the angle θ between the vertex displacement from IP and the V^0 direction
 - mass requirements
 - K_s : cos θ >0.999 & mass 15 MeV within PDG value
 - Lambda: cos0>0.99995 & mass 20 MeV within PDG value
 - conversions: cos0>0.99995 & less than 10 MeV for conversion mass, where the mass is geometrically corrected so that it is calculated using the track dip angles

$$m_{
m conv}^2 = 2|\vec{p_1}||\vec{p_2}|(1-\cos\Delta\lambda_{12})|$$

	before cut	after cut
K _s	3205	623
Lambda	1482	371
conversions	2544	278
other two-track reco vertices	30747	30333

multivariate analysis

- LCFI's original neural net implementation is difficult to maintain/extend
- we replaced it by TMVA (ANN and BDT)
 - a series of scripts has been written to perform the following tasks:
 - normalize input variables
 - split the data into training and testing samples
 - separate samples into several categories for individual training by the TMVA classifiers
 - combining output of the individual classifiers
 - evaluate the performance using the testing samples

LCFI input variables

• previously in LCFI:

- three categories, trained independently:
 - # vertex = 0
 - # vertex = 1
 - # vertex >= 2
- for # vertex = 0 (8 variables):
 - d₀ impact parameter (1)
 - d₀ impact parameter (2)
 - z₀ impact parameter (1)
 - z₀ impact parameter (2)
 - track momentum (1)
 - track momentum (2)
 - d₀ joint probability
 - z₀ joint probability
- for # vertex = 1, >=2 (8 variables):
 - d₀ joint probability
 - z₀ joint probability
 - vertex decay length
 - vertex decay length significance
 - vertex momentum
 - pt-corrected vertex mass
 - vertex multiplicity
 - vertex probability from the fitter

(1) and (2) indicate the most and second most significant track.

"joint probability" – probability that a track comes from the IP, computed *a priori* using the distribution of impact parameter significance (separately for d_0 and z_0), multiplied for all tracks in the jet

input variables

- additional variables
 - boosted sphericity
 - vertex displacement/momentum angle
 - vertex mass (not pt corrected)
 - mass, momentum, decay distance, decay significance for the first and second (if found) vertices
 - distance, significance, and displacement/momentum angle between the first and second vertices

new input variables

the new variables are trained by BDT

- for # vertex = 0 (9 variables):
 - d₀ impact parameter (1)
 - d₀ impact parameter (2)
 - z₀ impact parameter (1)
 - z₀ impact parameter (2)
 - track momentum (1)
 - track momentum (2)
 - d₀ joint probability
 - z₀ joint probability
 - boosted sphericity
- for # vertex = 1 (17 variables):
 - d₀ impact parameter (1)
 - d₀ impact parameter (2)
 - z₀ impact parameter (1)
 - z₀ impact parameter (2)
 - track momentum (1)
 - track momentum (2)
 - d₀ joint probability
 - z₀ joint probability
 - boosted sphericity
 - vertex decay length
 - vertex decay length significance
 - vertex momentum
 - vertex mass (pt-corrected)
 - vertex mass (not pt-corrected)
 - vertex multiplicity
 - vertex probability from the fitter
 - vertex disp/momentum angle

- for # vertex >= 2 (29 variables):
 - d₀ impact parameter (1)
 - d₀ impact parameter (2)
 - z₀ impact parameter (1)
 - z₀ impact parameter (2)
 - track momentum (1)
 - track momentum (2)
 - d₀ joint probability
 - z₀ joint probability
 - boosted sphericity
 - vertex #1 decay length
 - vertex #2 decay length
 - distance between vertex #1 & #2
 - vertex #1 decay length significance
 - vertex #2 decay length significance
 - separation significance between vertex #1 & #2
 - vertex #1 momentum
 - vertex #2 momentum
 - vertex momentum (combined)
 - vertex #1 mass (not pt-corrected)
 - vertex #2 mass (not pt-corrected)
 - vertex mass (combined, pt-corrected)
 - vertex #1 multiplicity
 - vertex #2 multiplicity
 - vertex multiplicity (combined)
 - vertex probability from the fitter
 - vertex #1 disp/momentum angle
 - vertex #2 disp/momentum angle
 - vertex #1/#2 disp/momentum angle
 - vertex #1/#2 angle

evaluating classifier response

- Lol flavor-tagging evaluation produced purityefficiency plots
 - but this depends on the fraction of heavy jets, which changes from sample to sample
 - BF(Z->bb)=15%, BF(H_{120 GeV}->bb)=68%
- better to use a fraction-independent measure: evaluate using background efficiency versus signal efficiency instead

variable ranking

- single variable ranking shows the most useful variables (on their own)
 - joint probabilities, vertex mass
- however, any other uncorrelated variable can help; these plots do not show this effect

variable ranking (correlation)

nvtx==0

- result of training after removing a variable
- this shows how "unique" this variable is in terms of uncorrelated classifying power
- significantly worse performance after removing the variable shows that it's effective
- for nvtx=0, joint
 probabilities (both d₀ & z₀) are the most
 powerful as expected

variable ranking (correlation)

nvtx==1

- for nvtx=1, the most effective variables are:
 - displacement/mom entum angle of the vertex
 - uncorrected mass of the vertex
- <u>newly added variables</u> are shown to be <u>effective!!!</u>

variable ranking (correlation)

nvtx>=2

 for nvtx>=2, the most effective variables are:

> separation significance between the 1st and 2nd vertices

 <u>AGAIN: newly added</u> variables are shown to be effective!!!

results

background = cc & uds mixed equally

there is already improvement merely by switching to TMVA (signal eff > 0.8)

more improvement by adding new variables (signal eff > 0.75)

results

uds rejection is pretty good

need more work on charm

summary (part I)

- we have a mature analysis framework to optimize flavor tagging
 - improvements over LCFI: ability to add arbitrary number of categories and input variables, choice of training method (via TMVA)
- performance for qq @ 91.2 GeV has been improved
- next:
 - leptons!
 - dedicated charm tagging
 - optimization at higher jet energies
 - ZHH jets, qq @ 500 GeV
 - qq @ CLIC energies
 - samples have been provided by A. Timoce and S. Posse (thanks, will look at them asap)

Status of LCFIVertex II: Application to a many-jet environment with a new jet clustering algorithm

Taikan Suehara

Tomohiko Tanabe, Satoru Yamashita (The Univ. of Tokyo)

Multi-jet flavor analysis

Many LC physics targets have
Many jets (4, 6, 8, ...)
Many b jets (from H->bb, t->bW etc.)
b-tagging in multi-jet environment

qqbbbb (32%) qqbbWW(14%)bbbbqqqq(31%)vvbbbb (9%) etc. (120GeV Higgs)bbbbqqlv(31%) etc.Taikan Suehara et al., ALCPG11 @ U Oregon, 20 Mar. 2011 page 27

B-tagging in ZHH (Z->qq)

Y. Takubo, ALCPG09

Selection of event samples

BG can be rejected effectively by using events with $N_b \ge 3$.

	No cut	$N_b = 3$	$N_b \ge 4$	σ = 0.16 fb
Signal	79	15.9(0.20)	9.5(0.12)	
BG	207,144	4663(0.02)	147(7 x 10 ⁻⁴)	

Events with $N_b = 3$ and $N_b \ge 4$ were selected as analysis samples.

b-tagging efficiency seems to be bad...

'# of b jets' in ZHH

of b-jets is reduced due to mis-jet-clustering.

The new jet clustering

Find b- (or c-) vertices

Cluster around the vertices Distribute vertices to separate jets

The procedure

- Original jet finder based on "build-up" method
 ZVTOP cannot be used without tuning
 - It's designed to be used after jet clustering
 - Too many fakes without "jet-direction" parameter

- IP tracks are firstly removed (tear-down)
 Vertices are calculated for every track-pair
 - Calculate nearest points of two helices
 - Geometric calculation for the start point
 - Minuit minimization using track error-matrices

Pre-selection

- Mass < 10 GeV (B: ~5 GeV)</p>
- Momentum & vertex pos: not opposite to IP
- Vertex mass < energy of either track
 - This selection is very effective for dropping fakes
- Vertex distance to IP > 0.3 mm
- Track chi2 to the vertex < 25</p>
- Associate more tracks to passed vertices
 - Using same criteria as above
- Sort & select obtained vertices by probability
 - Associated (# tracks >=3) vertices are prioritized
 - Example in next slide…

Example: 5 vertices are found

Vertex #	Tracks included	Probability
1	1,2,3	0.9
2	2,4,5	0.4
3	3,4	0.8
4	5,6	0.6
5	6,7	0.5

Example

	Probability	Tracks included	Vertex #
Adopted!	0.9	1,2,3	1
	0.4 -> 0.6	% ,4,5	2
Removed	0.8	₩4	3
	0.7	5,6	4
	0.5	4,7	5

Example

	Probability	Tracks included	Vertex #
Adopted!	0.9	1,2,3	1
	0.7	5,6	4
the second s	0.6	4,5	2
	0.5	4,7	5

Example

and the second			
	Probability	Tracks included	Vertex #
Adopted	0.9	1,2,3	1
Adopted	0.7	5,6	4
Remove	0.6	4,💢	2
	0.5	4,7	5

Taikan Suehara et al., ALCPG11 @ U Oregon, 20 Mar. 2011 page 37

d!

Example

	Probability	Tracks included	Vertex #
Adopted!	0.9	1,2,3	1
Adopted!	0.7	5,6	4
Adopted!	0.5	4,7	5

Finally, three vertices are adopted.

Vertices in ZHH -> bbbbbb

In 347 bbbbbb events: Good = 2040, bad (not from B-semistable) = 90

2. Vertex selection & muons

 Vertex selection - K0 vertices are removed (mass +- 10 GeV) Vertex position > 30 mm are removed Mostly s-vertices Secondary muons - Following tracks are treated as same as vertices With muon hit Currently > 50 MeV energy deposit Impact parameter (> 5 sigma & not too much) • Ecal, Hcal energy deposit

Selection performance

Vertex selection (347 bbbbbb events)

	Good vtx	Bad vtx	Purity
No cut	2040	90	96%
K0 and pos cut	1960	61	97%

Optimized for efficiency (bad contains partially bad)

Lepton selection (347 bbbbbb events)

	Secondary µ	Other µ	Others	Purity
No cut	430	585	23168	1.8%
Muon hit > 50 MeV	267	23	49	79%
All cuts	178	4	5	95%

Optimized for purity (not so good efficiency)

3. Vertex combination

Opening angle < 0.2 rad is treated to be the same vertices (< 0.3 rad if either is muon)

4. Jet clustering

- Collecting PFOs around each vertex

 PFOs with opening angle < 0.2 rad is associated to the vertex
- Ordinary Durham method for rest of PFOs

 Combined from the least y-value

$$y = \frac{2\min(E_1, E_2)^2(1 - \cos\theta_{ij})}{Q^2}$$
 Durham
y-measure

Jet candidates with vertices are never combined
y-value with such combination is set to be infinite

Number of b jets in bbbbbb

significant improvement seen! All jets including b – 52% -> 66%

of b-hadron tracks

Jets are sorted by descending order of # of b-hadron tracks

B-tagging performance

Data buried in KEK servers...

Summary for all

- Flavor tagging
 - New framework of BDT/ANN developed
 - New variables examined
 - Performance at Z-pole improved
 - c-tagging & CLIC study about to start
- Jet clustering
 - New jet clustering with vertex developed
 - Performance in ZHH/ttbar improved in MC-truth level
 - b-tagging performance will be checked

backup

