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Is it feasible to build the laser?

Requirements at interaction point:

 Energy  5-10 J

 Spot size  10-20 mm (diffraction-limited)

 Wavelength  1 mm

 Pulse length  2.4 ps FWHM (s = 1 ps)

 Circular polarization

 Rep rate/pulse train for superconducting L-band accelerator:
— 369 ns bunch spacing

— 2820 bunches/train

— 5 Hz train repetition rate

 5 Hz x 2820 x 10 J  140 kW average power laser
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Laser requirements depend on interaction 

configuration
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A conceptual design for a resonant stacking 

cavity was done by DESY-Zeuthen and MBI* 

 Design for L-band accelerator

— 369 ns pulse spacing (111 m cavity length)

* I.Will, T. Quast, H. Redlin andW. Sander, ―A Laser System For The TESLA Photon Collider

Based On An External Ring Resonator‖, Nucl. Instrum. Meth. A 472 (2001) 79.

G. Klemz, K. Monig, I. Will, ―Design study of an optical cavity for a future photon-collider

at ILC‖, Nucl. Instrum. Meth. A 564 (2006) 212.
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A resonant stacking cavity can enhance the 

laser interaction intensity by >400 times

 Only 10-9 of laser energy used in each interaction

 Baseline case: input coupler R=0.996, cavity mirrors R=0.998
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Resonant cavity enhancement puts stringent 

requirements on the laser and optics

 Dispersion in resonant cavity

 Phase noise

 Cavity length/laser repetition frequency

 Amplitude noise

 Thermal changes to refractive index in amplifiers/optics

 Pointing stability

 Coating damage due to scattered electrons and synchrotron 
radiation can reduce mirror reflectivity

— Seven mirrors for total R=0.998   R=0.9997 each
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 A commercial system (Femtolasers) is now available that produces 5 mJ, 1 

kHz, 30-fs pulses at 800 nm with 50 mrad rms phase noise
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A linear phase ramp through the bunch can 

be caused by thermal or vibrational effects

 Would like phase variation <0.2 wave 

through pulse train

 Can relate to cavity length:

1 wave  1 µm

1 wave/bunch  0.7 mm/s
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Due to nonlinear effects, the laser energy 

jitter should be <1% rms

 The B-integral is a measure of nonlinear phase accumulation

—

 Nonlinear effects transform energy jitter into phase jitter

 Typical short-pulse lasers run with B<2, but some fiber-laser designs 
have B>5
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Laser system concept
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Oscillator

 We must lock the phase of the oscillator to the resonant cavity

• Would like < 0.02 waves (125 mrad) rms variation 

Carrier Envelope Phase (CEP) Locking is now a well-established technique:

 0.10 wave (650 mrad) achieved in CEP stabilized Ti:Sapphire system (1.4 mJ @ 1 kHz) [1]

 0.03 wave (171 mrad) achieved with single amplifier (21 nJ, 75 MHz) [2]

 Direct feed-forward method for CEP stabilization has reduced the residual phase noise of a 

femtosecond oscillator to 45 mrad rms over a 5-second time interval [3]

 A commercial system (Femtolasers) is now available that produces 5 mJ, 1 

kHz, 30-fs pulses at 800 nm with 50 mrad rms phase noise 

[1] E. Gagnon, et al., Opt. Lett. 31, 1866 (2006)

[2] A. Ozawa, et al., New J. Phys. 11, 083029 (2009)

[3] S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, G. Steinmeyer, Direct frequency comb synthesis with arbitrary offset and 

shot-noise-limited phase noise”, Nature Photon. 4, 462-465 (2010).

These techniques will need to be adapted to an oscillator operating at 1 µm wavelength
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Pulse stretcher

 Initial 200 fs pulse stretched to 5.6 ns with 4-nm hard-cut bandwidth

1 m

grating

1800 line/mm

roof mirror

spherical mirror R=400 cm

flat mirror
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CW amplifiers

 Amplify as far as possible in CW-pumped amplifiers to avoid thermal 

phase variation caused by pulsed pumping

 Ytterbium (Yb) doped fibers can be used to efficiently amplify the 

stretched pulses while maintaining the required bandwidth

— Large-core-diameter step-index or photonic crystal fiber

Recent relevant short-pulse fiber laser results:

— Röser, et al. [1] demonstrated 100-µJ, 500-fs pulses at 0.9 MHz (90 W) 

— Zaouter et al. [2] demonstrated 100-µJ, 270-fs pulses at 0.3 MHz (30 W)

 A reasonable target is 135 W average power (50 µJ @ 2.7 MHz)

— After amplification, slice to 5-Hz, 4000-pulse trains (0.9 W average)

[1] F. Röser, D. Schimpf, O. Schmidt, B. Ortac, K. Rademaker, J. Limpert, A. Tünnermann, “90 W average 

power 100 µJ energy femtosecond fiber chirped-pulse amplification system”, Opt. Lett. 32, 2230-2232 (2007).

[2] Y. Zaouter, J. Boullet, E. Mottay, E. Cormier, “Generation of high energy and high quality ultrashort pulses 

in moderately non-linear Fiber Chirped Pulse Amplifier”, Proc. SPIE 7195, 719512-1 (2009).
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Bulk amplifier design must balance 

energetics with heat removal

 Need a gain of 10  per amplifier for three amplifiers

 Would like to maintain spatially uniform temperature profile 

through pulse train

 Would like to remove all heat before next train

— High thermal conductivity and low heat capacity

 Thin slabs or long narrow rods will be necessary for heat 

extraction
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Yb:YAG is an attractive gain medium for the 

photon collider laser

 Can achieve a gain of 1000 with bandwidth (1.5 nm) to support 1 ps pulses

— Three stages with G10 to boost 50-mJ fiber output to 50 mJ

 Reduced thermal effects with pump at 940 nm, lasing at 1030 nm

 Other Yb hosts also possible: S-FAP, KYW, Sc2O3

 Basic three-level energetics model for final stage gives 50-mJ pulse train:

— sa = 0.76x10-20 cm2, ss = 3.3x10-20 cm2, =0.95 ms, 5-mJ input, room temperature

— 2-cm long crystal, 1.5-cm diameter beams (flat-top)
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Thermal effects in the main amplifiers will 

have to be mitigated

Pulsed diode pumping in final amplifiers will change material index of 
refraction no and length L

  k dz 
2


 n(r, t) dz 

2noL


 B(r, t)Linear phase:

For Yb:YAG:

dn/dT  8x10-6/°K, dL/dT  7x10-6/°K

L = 2 cm, no=1.82

1  (2 rad) ->  DT = 3.6 °K

Reducing and compensating for the thermal loading in 

the final amplifiers will be our main laser challenge
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Heating Yb:YAG with 200 J/bunch:

DT=200 J/((0.59 J/gK)(4.56 g/cm3)(3.5 cm3))

DT = 21 °K (6 )

Phase modulator can potentially compensate 

thermal effects, assuming phase variation is 

spatially uniform 
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Several current amplifier designs allow aggressive 

cooling of thin (mm) slabs in kW-class systems

Textron ThinZag® amplifier

LLNL Mercury He gas cooling

TRUMPF thin-disk laser

EdgeWave INNOSLAB laser
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A 1-mm slice of Yb:YAG increases 22K 

during the 2-ms pulse train

 2-cm length sliced into 1-mm slabs with equal thermal loading

— 10 J heat over 2 ms in 1.5-cm diameter pump spot
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The 1-mm slice can be cooled before the next 

pulse train

 Liquid cooling over slab faces with heat transfer coefficient h=1 W/cm2K

 Slab temperature equilibrates to 300K between pulses, coolant T=290K

Radial thermal differences during the pulse train and 

nonuniformities due to cooling geometry will need to be modeled
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Diode pumping of the bulk amplifiers

Diode pump:

2.0 ms

Extraction:
…

369 ns

Thermal load:

Diodes:

50 mJ/369 ns = 136 kW peak       339 kW peak

at $5/peak W    $1.7 M for diodes/drivers

 3500 bars at 100 W/bar

Lifetime  5x109 shots = 31.7 years @ 5 Hz

40% eff.



22

894 896 898 900 902 904 906
0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

 

Intensity       

Wavelength

 BP 5 D = 4.2 nm

 BP 6 D = 3.9 nm

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

 

Intensity       

Time (ms)

 BP5 Droop = 4.3%

 BP6 Droop = 4.3%

Operated at:

- 120 W/bar at 10 Hz

- 900 ms pulsewidth

tile with 23 

diode bars

The Mercury laser at LLNL uses four 80 kW diode 

arrays for a total of 320 kW of peak diode power

-0.2 -0.1 0.0 0.1 0.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

 

Intensity       

Radians

 Fast axis: 15.1 mrad

 Slow axis: 141 mrad
Power droop = 4.3% Bandwidth = 4 nmDivergence = 1 x 8 degrees 



23

Pulse compressor

 Amplified spectrum (1.55 nm FWHM) compressed to 1.1 ps FWHM

 32 mJ in 2-cm diameter (1/e2 Gaussian)  0.02 J/cm2

— Well below damage threshold of >2 J/cm2
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World’s largest dielectric gratings (LLNL)

Vacuum compressor (Titan – LLNL)

Pulse compressor

 System may be in vacuum after 
compression

— Must look at system trades

 Average power density:

— 1 kW, 2-cm Gaussian  640 W/cm2

 Average power testing of Multi-Layer 
Dielectric (MLD) gratings:

— >2 kW/cm2, no wavefront distortion

— 100 kW/cm2 small spot - no damage

 High efficiency (>97%) gratings for linear 
polarization

— Waveplate after compressor to 
make circular polarization 
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Pulse transport, polarization, and injection

 All in controlled environment (vacuum, argon)

Deformable mirror

15-cm dia.

beam  7 cm dia.
Gaussian

Quarter waveplate

2-mm thick

beam 7 cm dia. Gaussian

B-integral = 0.01

Ring injection mirror

120-cm dia. X 20-cm thick

beam 49 cm dia. Gaussian

B-integral = 0.01

Compressor

beam 2 cm dia. Gaussian
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Summary

System will be challenging, but no show-stoppers identified yet

— Thermal effects in main bulk amplifiers will have to be controlled 
and compensated

– Needs further design and 4-D modeling

— Extensive control system will be necessary to maintain phase 
coherence in resonant cavity


