



Institut de Tècniques Energètiques

inte

UNIVERSITAT POLITÈCNICA DE CATALUNYA

# **ATF2 LATTICES**

Presenter: Edu Marin (Phd Student) eduardo.marin.lacoma@cern.ch

Acknowledgements : Mark Woodley, Glen White, Rogelio Tomas

22.03.2011

ALCPG11

1

### PLAN OF THE TALK

- 1. The ATF2 Nominal and Ultra-Low  $\beta^*$  Lattice.
- 2. Multipoles
- 3. Possible Solutions
  - Alternative lattices
- 4. Squeeze sequence
- 5. Feasibility of the ATF2 Bx2.5By1.0 Lattice.
  - Knobs for the ATF2 Bx2.5By1.0 lattice.
  - Tuning results.
- 6. Swapping the magnets
- 7. Conclusions and Future Plans.

### ATF2 IDEAL LATTICES

#### ATF2 Nominal Lattice



ATF2 Ultra-low  $\beta^*$  Lattice

 $σ_x = 3.8 \ \mu m$   $σ_y = 22.9 \ nm \ (rms)$   $σ_y = 18.9 \ nm \ (core)$   $β_x = 4.2 \ mm$  $β_y = 0.025 \ mm$ 

| Project        | L* [m] | β <sub>y</sub> * [μm] | ξ <sub>y</sub> |
|----------------|--------|-----------------------|----------------|
| ATF2 Nominal   | 1.0    | 100                   | ~19000         |
| ILC Desgin     | 3.5    | 400                   | ~15000         |
| ATF2 Ultra-low | 1      | 25                    | ~76000         |
| CLIC 3 TeV     | 3.5    | 90                    | ~63000         |

### MULTIPOLES IN THE ATF2- EXT FFS

Multipoles included:

2.1.

- Final doublet: Multipoles up to 18 pole
- Sextupoles: Multipoles up to 18 pole
- FFS Quadrupoles: Multipoles up to 8 pole
- EXT Quadrupoles: Multipoles up to 8 pole



### MULTIPOLES IN THE ATF2- EXT FFS

Comparision between last multipoles and the previous one:

2.2.



#### 2.2.

#### **MULTIPOLES EFFECT**



The skew sextupole component is corrected thanks to the skew sextupole inserted in the line last January



ATF2 Nominal Lattice





ATF2 Ultra-low  $\beta^*$  Lattice

$$σ_x = 5.5 \mu m$$
  
 $σ_y = 79 nm (rms)$   
 $σ_y = 52 nm (shintake)$   
 $σ_y = 30 nm (core)$ 

### POSSIBLE SOLUTIONS

The possible cures in order to accommodate the existing multipoles could be:

- Decrease  $\beta_x$  at QF1FF
- Run the machine at lower horizontal emittance
- Replace the Normal conducting QF1 by a Super conducting magnet (\*)
- Swap the magnets

(\*) not covered in this talk. For further details refer to the following presentation:

Impact on the beam size using a SC QF1 on the ATF2 Ultra-low  $\beta^*$  lattice, during the ATF2 SC meeting in October 2009.

## 3.1 ALTERNATIVE LATTICES: DECREASE $\beta_x$ at QF1



All these lattices are available at: http://clicr.web.cern.ch/CLICr/ATF2/New\_Multipoles2

ALCPG11

### SQUEEZE SEQUENCE

To reach a successful tuning for the Ultra low lattice is recommended to follow a squeeze sequence.

In this sense, 2 Intermediate lattices (  $\beta_v = 42 \ \mu m \& \beta_v = 75 \ \mu m$  ) have been worked out.



The Shintake monitor observed a minimum beam size at  $\beta_y = 42 \ \mu m$ . The new chromaticity is about ~ 47.000 < 63.000 (CLIC)

4.

Chromatic effects can not be corrected for the ATF2  $\beta_y = 25 \mu m$  lattice 22.03.2011 ALCPG11

5.1

#### ATF2 Bx25By1 KNOBS



### **TUNING CONDITIONS**

- Statistical Study of 100 seeds.
- Quads & Sext. misalignent: 30 μm
- Quads & Sext tilt: 300 µmrad
- Strength error: 10<sup>-4</sup>

5.2.

 Tuning via MAD-X & MAPCLASS using Simplex algorithm



Constraint:

minimize  $\sigma_v$  evaluated as the BSM does

#### **TUNING RESULTS**



After scanning the obtained set of knobs 3 times... 53 % seeds < 60 nm (rms) (new multipoles)

75 % seeds < **60 nm** (rms) (old multipoles)

Next steps:

- Try to improve the algorithm
- To include ground motion

5.3.

```
5.4.
```

### SWAPPING THE MAGNETS

Optimizing the magnets locations according to their field quality.



This lattice was obtained with the previous multipoles version.

A new swapping option could be work out according to the new multipoles. 22.03.2011 ALCPG11

### 6. CONCLUSIONS & FUTURE PLANS

- The last multipoles evaluation release (v4.4) have been introduced into the model.
- New designs for both Nominal and Ultra-low lattices have been obtained. Still work ongoing for improvements in terms of  $\beta_x^*$ .
- A first statistical tuning study shows that 53% of the seeds reach a final  $\sigma_v < 60$  nm.

#### To be done...

- To decrease  $\beta_x^*$  in order to obtain a more suitable ratio  $\sigma_y/\sigma_x$  and get closer to ILC and CLIC designs.
- To implement the squeeze tuning technique for the ATF2 Intermediate lattice.
- Hopefully the tuning algorithm will improve.
- Consider a new lattice in terms of better magnet distribution
- To include the ground motion into the tuning simulations.