

Nick Walker

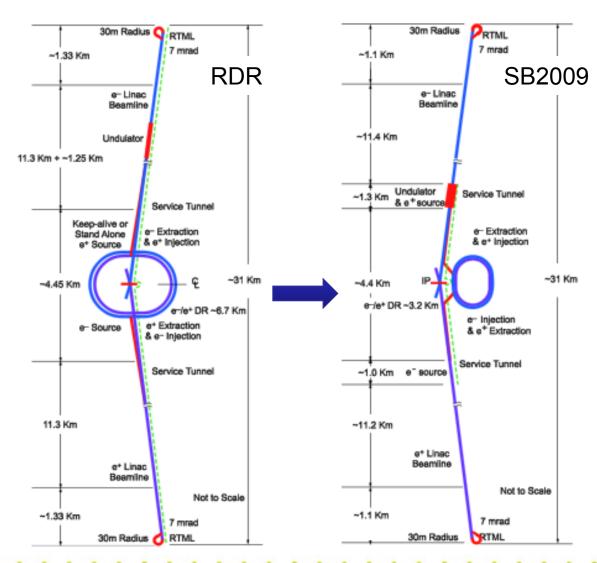
Marc Ross

Akira Yamamoto

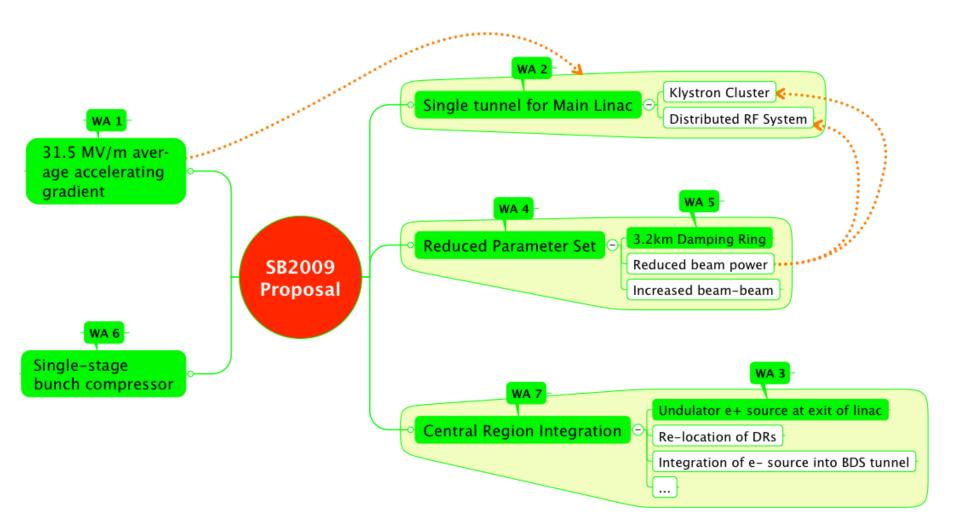
23.03.2011 ALCPG'11 Eugene Oregon

What's in store

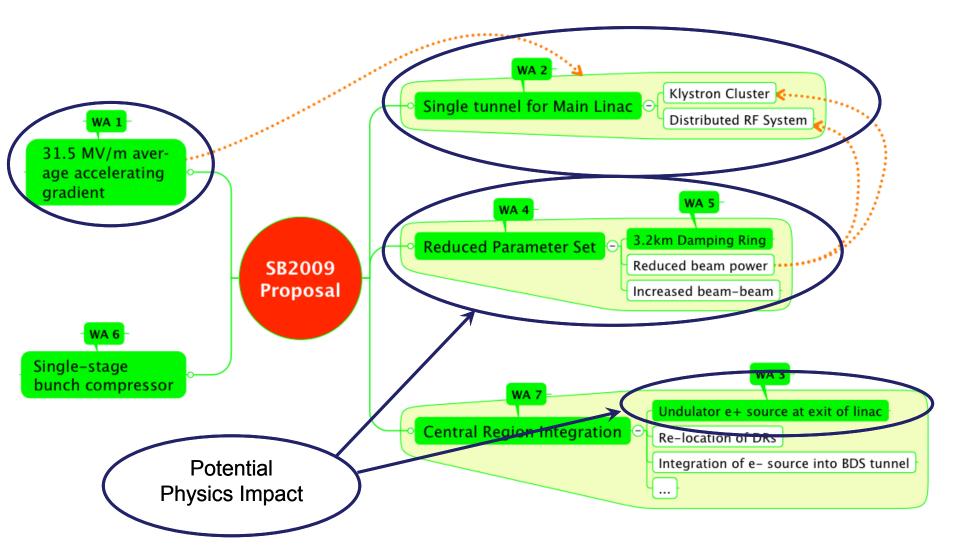
- New Baseline for the TDR
- Remaining AD&I work for the TDR
- Towards 1000 GeV
- CLIC
- SCRF mass production and cost
- CFS civil engineering
- Beam Test Facilities
- Summary


2

New BASELINE for the TDR


Accelerator Design & Integration

- 2009 Design Studies
 - on-going
- Cost Constraint
 - 'Global' Value Engineering
- Towards an agreedupon baseline for the TDR
 - Top-Level Change Control Process (TLCC)
 - Communication with <u>stakeholders</u> (e.g. <u>Physics & Detector</u> groups)



SB2009 Proposal

TLCC Themes

TLCC Process

- 1. Accelerating Gradient
- 2. Single-tunnel (HLRF)
- 3. Low-Power Parameter
- 4. Positron source location

1st BAW

KEK 7-10th Sept. 2010

2nd BAW

SLAC 18-21st Jan. 2011

Proposals submitted to director

Issue Identification

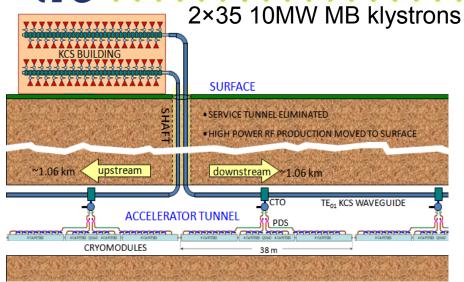
- Planning
- Identify further studies
- Canvas input from stakeholders

٠...

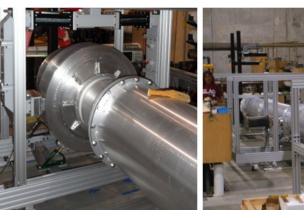
Baseline Assessment Workshops

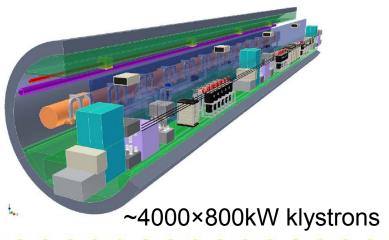
- Face to face meetings
- Open to all stakeholders
- Plenary

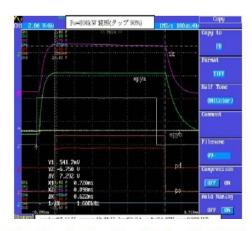
Formal Director Approval


- Change evaluation panel
- Chaired by Director

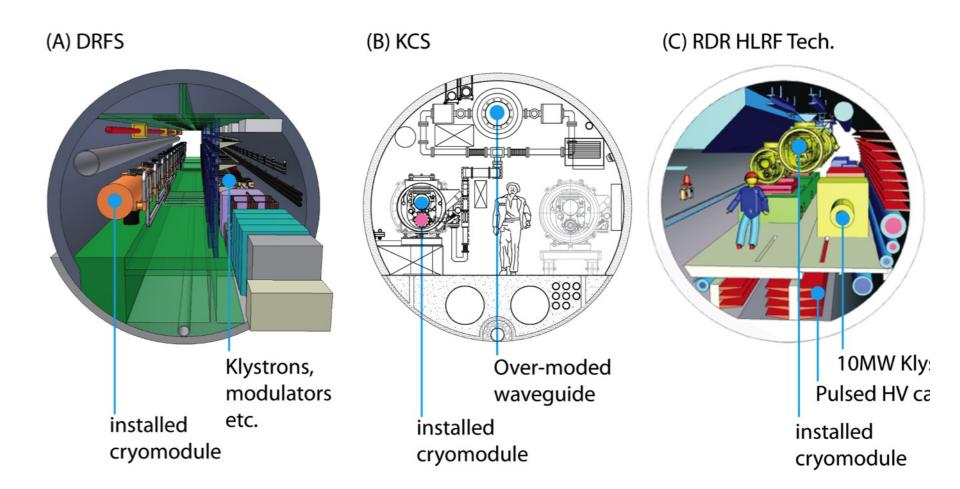
APPROVED!


keywords: open, transparent


High-Level RF Solutions


Klystron Cluster Scheme, KCS (SLAC)

Distributed RF Sources, DRFS (KEK)



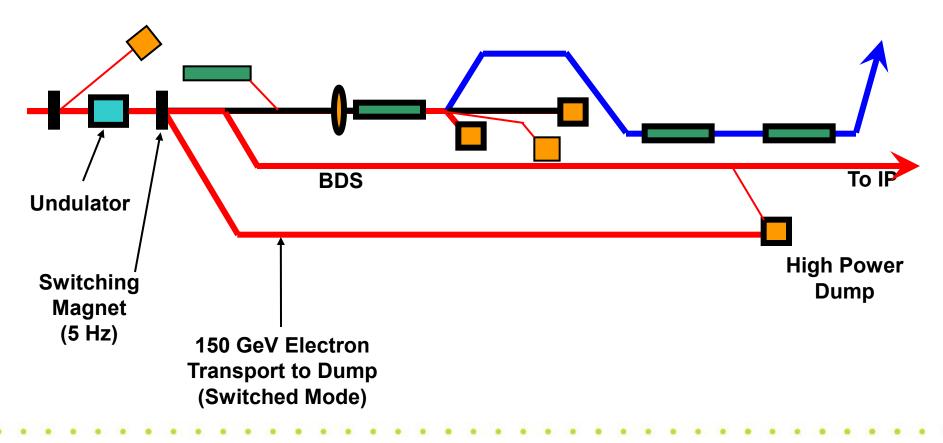
Main Linac Tunnel Solutions

Reduced Power Option

								upgrade
Centre-of-mass energy	E_{cm}	GeV	200	230	250	350	500	1000
Luminosity	L	$\times 10^{34} \text{ cm}^{-2} \text{s}^{-2}$	0.5	0.5	0.7	0.8	1.5	2.8
Luminosity (Travelling Focus)	L_{TF}	$\times 10^{34} \text{ cm}^{-2} \text{s}^{-2}$	0.5		0.8	1.0	2.0	
Number of bunches	n_b		1312	1312	1312	1312	1312	2625
Collision rate	f_{rep}	Hz	5	5	5	5	5	4
Electron linac rate	f_{linac}	Hz	10	10	10	5	5	4
Positron bunch population	$N_{\scriptscriptstyle +}$	$\times 10^{10}$	2	2	2	2	2	2

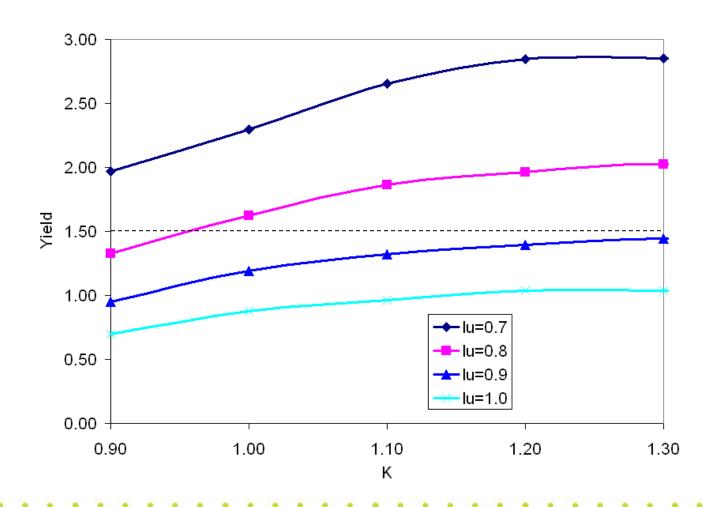
Primary motivation for low-power:

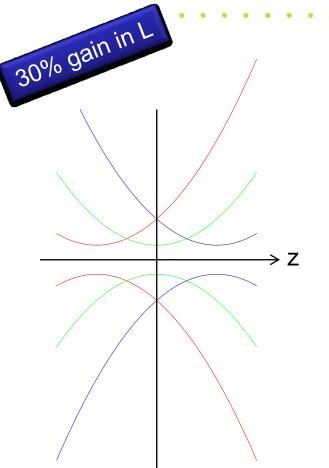
- Reduced RF power (modulators, klystrons, associated CFS)
- Smaller circumference damping ring (6.4 km → 3.2 km)



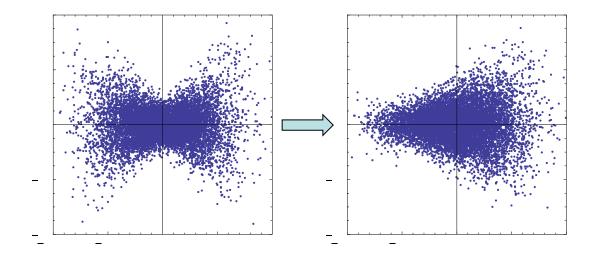
Important: recovery (upgrade) scenario now supported

- e.g. support for 3 DRs in single tunnel


e⁺ Production: Switched Mode


Nb3Sn Undulator R&D

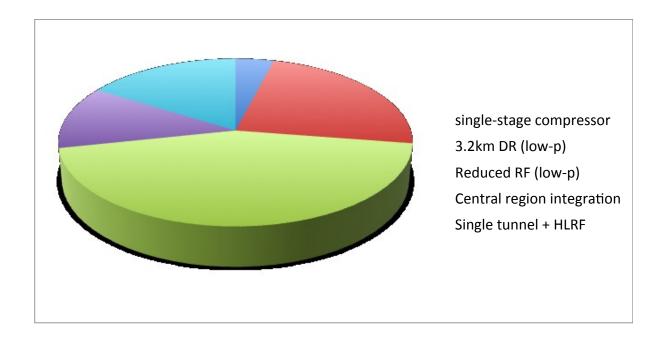
High K, short period undulator with 100 GeV drive beam


What is required for Travelling Focus?

Shift the waist (focal point) of each z-slice by -z/2

Apply an additional (coherent) shift of $-\sqrt{3}\sigma_z/2$

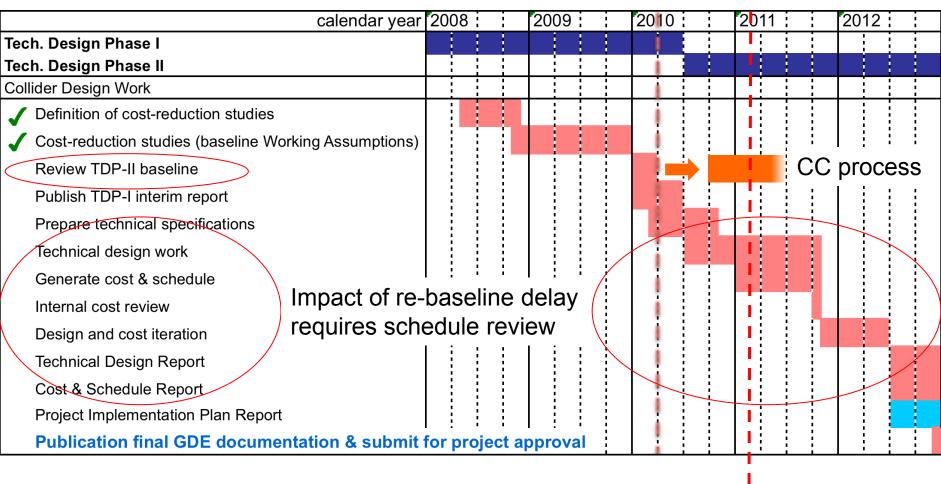
Note: Guinea Pig applies to both planes



Considered high risk. Requires further study (on going)

TLCC – Bottom Line

Cost containment: 600-800 MILCU


- Performance in principle maintained
- Higher risk (top 30% lumi)

AD&I: Next Steps towards the TDR

Collider Design Work (ADI)

You are here!

Planning for the TDP 2

	2010	2011	2012
Risk Mitigating R&D		İ	
Re-Baseline (CC)		i	
AD&I (TLCC)			
AD&I (TBR*)			
TeV upgrade study			
Update VALUE estimate			
Tech. Risk Assessment			
PIP			
Write TDR report(s)		1	
* T		You are here	.!

* Technical Baseline Reviews

TDP Key Focus (beyond R&D)

SCRF Cost

- mass production models
- global distribution

Highest Priority (new estimate)

CFS design & cost

- Design update
- Value engineering

High Priority (updated estimate)

Baseline Design

- Final design decisions
- Documentation
- Cost estimate

RDR update Documentation (scaled estimate)

CFS requirements critical input

Technical Baseline Reviews

The next "thing" after TLCC

Similar format to TLCC BAW but reduced scope

- next-level of design decisions
- PM (not Director) driven

two-day focus workshops

- face-to-face for key (mandatory) participants, but
- open meetings to all who wish to attend
- Webex available
- Written detailed summaries to be provided

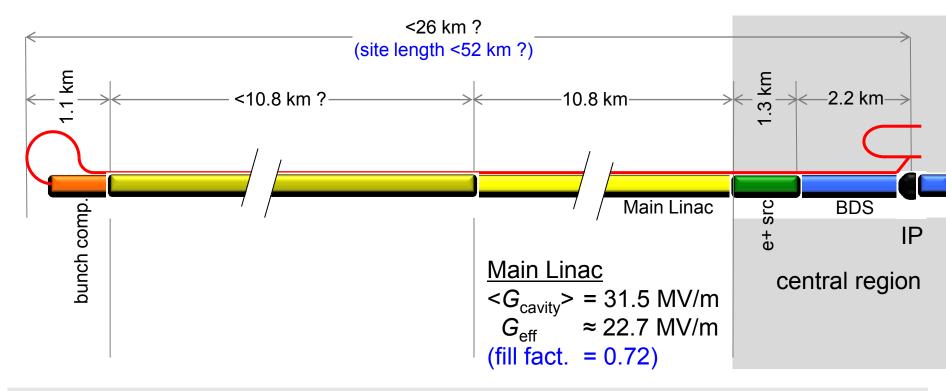
Open and transparent

TDR Technical Baseline Reviews

Dates and venues:

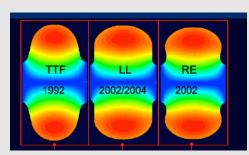
Baseline Technical Reviews					
Area / Group	When	Where			
DR	7-8 July, 2011	INFN			
RTML	TBD (Oct 2011?)	Fermilab			
BDS	27-28 Oct 2011	DESY			
Sources	12-13 Dec 2011	ANL			
SCRF / Main linac	Winter 2011 / 2012	KEK			
integration					
CFS	Winter 2011 / 2012	Fermilab / Cern			

Physics and Detector to be represented


Towards 1000 GeV

ILCSC Parameters subcommittee report:

"an initial center-of-mass (cms) energy up to 500 GeV with the ability to upgrade to 1 TeV"

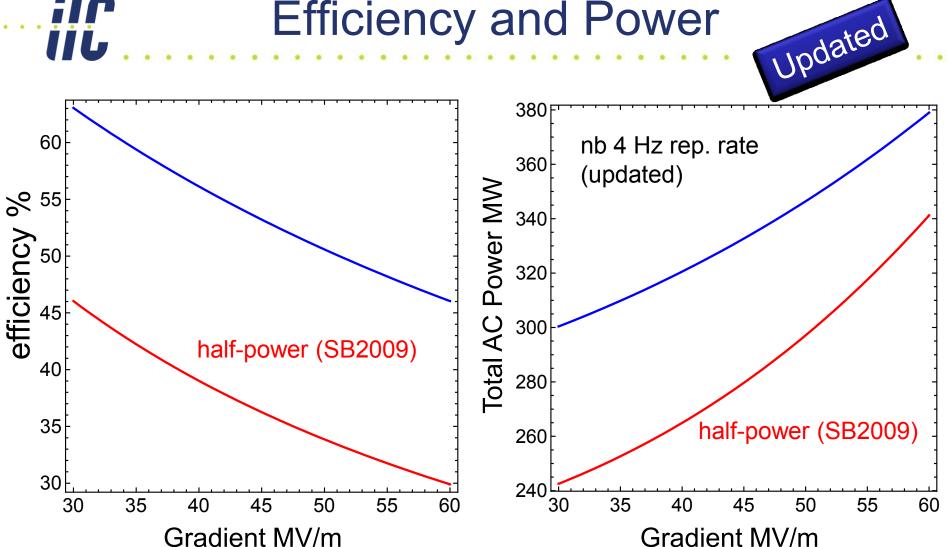


From 500 to 1000 GeV

Snowmass 2005 baseline recommendation for TeV upgrade:

 $G_{\text{cavity}} = 36 \text{ MV/m}$ (VT $\geq 40 \text{ MV/m}$)

Based on use of low-loss or reentrant cavity shapes


 \Rightarrow 9.6 km

% ⁵⁵

40

Efficiency and Power

Simples scaling – needs more detailed analysis

1 TeV Tentative Parameters

Collision rate	f_{rep}	4	Hz
Number of bunches	n_b	2625	
Bunch population	N_{-}	2	$\times 10^{10}$
Bunch seperation	Δt_b	356	ns
Pulse current	$I_{\it beam}$	9.0	mA
RMS bunch length	$\sigma_{\!\scriptscriptstyle z}$	0.3	mm
RMS energy spread (e-, e+)	$\Delta p/p$	0.105, 0.038	
Polarisation (e ⁻ , e ⁺)	<i>P</i> .	80, 22	%
Emittance (linac exit)	$\gamma \mathcal{E}_{x,y}$	10, 0.035	μm
IP beta function	$eta_{x,y}$ *	30, 0.3	mm
IP RMS beam size	$\sigma_{x,y}$ *	554, 3.3	nm
Vertical disruption parameter	D_y	19.2	
Luminosity	L	2.70	$\times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
Fraction of luminosity in top 1%	$L_{0.01}/L$	63.5	%
Average energy loss	$\delta E_{ m BS}$	4.9	%
Number of pairs per bunch crossing	N_{pairs}	169	
Total pair energy per bunch crossing	$E_{\it pairs}$	1084	TeV

Current "official" parameter set in EDMS*.

Should still be considered <u>tentative</u>, pending <u>review</u> and <u>further study</u>.

Understanding (and updating) these parameters is our job for the next ~6 months.

negotiation!

^{*} EDMS Doc ID: D*925325 http://ilc-edmsdirect.desy.de/ilc-edmsdirect/file.jsp?edmsid=*925325&fileClass=ExcelShtX

CLIC Status

CLIC Study since IWLC10:

Goal: Extend LC to multi-TeV

- CLIC technology feasibility up to 3 TeV →
 - underway in CTF3 2011 / 2012
 - (3 TeV ~ consistent with LHC)
- energy will certainly be limited by practical considerations ->

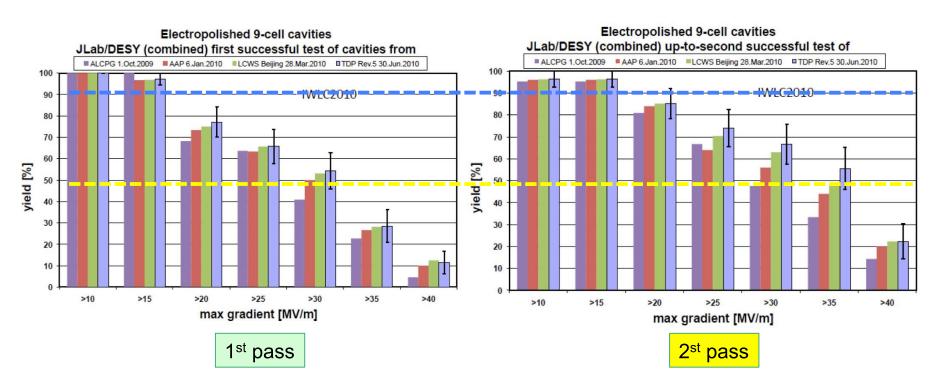
power consumption:

- recent re-estimate: 568 MW@ 3 TeV

568 MW@ 3 TeV 241 MW@500 GeV

(or cost)

For LCWS11 – Granada


- 26-30 September 2011
- Joint CLIC / GDE Workshop
 - Prepare for <u>European Strategy for PP</u> mid 2012
 - CLIC will indicate by Spring 2012 the CLIC cost in an energy band including 500 GeV up to an energy (1 to 2 TeV?)
 - Strong overlap with GDE (500 GeV to 1 TeV)
- Workshop to be planned 'jointly'
- From GDE:
 - Goals and agenda to help prepare for ESPP

SCRF R&D Mass production models and cost

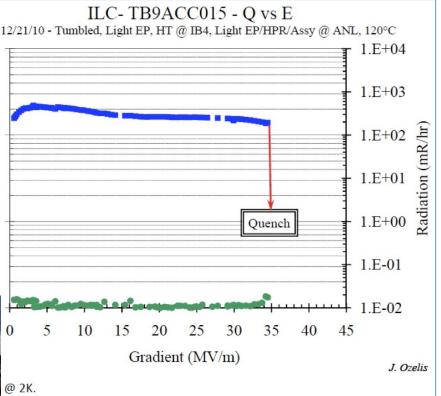
Production Yield - Progress

Only contains: 2 vendors + 2 infrastructure (DESY, JLAB)

Next update:

Additional Japan vendor + 2 infrastructure (KEK, FNAL/ANL)

TB9ACC015: Tumbled at FNAL


Reached E = 34.5 MV/m, Q = 1.4E10

1.E+10

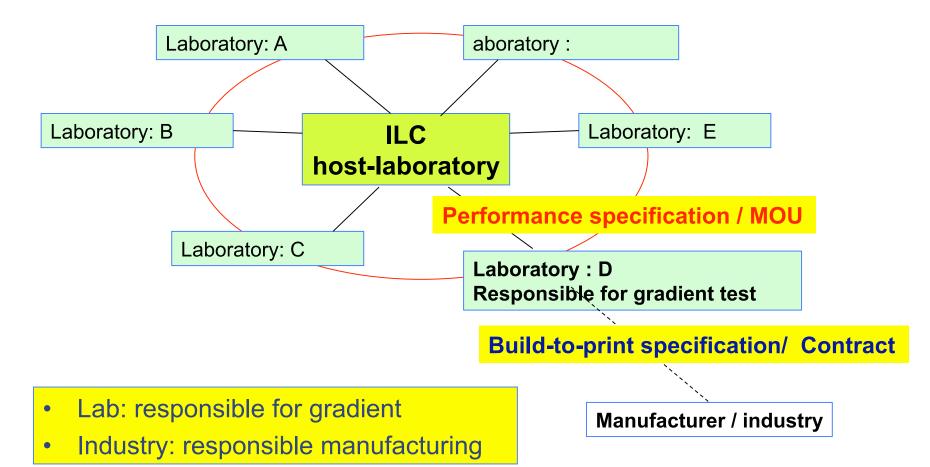
1.E+09

0

At
FNAL
FNAL/ ANL
FNAL
FNAL/ ANL
FNAL

R&D towards possible cost reduction

Progress in the 3rd batch production at MHI (No. 12 ~ 22) processed at KEK


Test Date	Name of cavity	Proces s Cycle	E-max [MV/m]	Q0 at E-max	Q0 at 35 MV/m	Project
2010/11/11	MHI-12	1 st	37.5	5.4E9	7E9	Q. B. / Injector
2010/12/18		2 nd	40.7	6.18E9	1E10	
2010/11/25	MHI-13	1 st	36.2	7.5E9	9E9	Q. B. / Injector
2010/12/22		2 nd	32.2	8.75E9		
			\			
Plan in 2011	MHI-14	1 st , 2 nd ,				STF2, CM1
	MHI-15	1 st , 2 nd ,				STF2, CM1
	MHI-22	1 st , 2 nd ,				STF2, CM1

An Industrialization Model and

Responsibility

A. Yamamoto

ilc iii.	Plan for Visiting	Vendor

	•••					
N o.	Date	Company	Meeting Place	Technical sbject	Notes	
1	2/8	Hitachi	Hitachi / Tokyo	Cavity & Cryomodule		
2	2/8	Toshiba	Toshiba / Tokyo	Cavity & Cryomodule		
3	2/9	MHI	MHI / Kobe	Cavity & Cryomodule		
4	2/9	Tokyo Denkai	TD / Tokyo	Nb Material / Sheet		
5	2/18	NingXia, OTIC	OTIC / NingXia	Nb Material / Sheet		
6	3/3	Zanon	INFN / Milano	Cavity & Cryomodule		
7	3/4	RI	RI, Koeln	Cavity & Cryomodule		
	TBD	Heraeus/Plansee	EU	Material		
8	3/14	AES	AES,	Cavitu & Cryomodule		
9	3/15	Niowave	Niowave	Cavity & Cryomodule		
10	11/16	PAVAC	PAVAC	Cavity & Cryomodule		
poner	3/17	Wah-Chang	In Oregon	Nb Material / Sheet		

GDE members: PMs, and RDs / Cost-experts / Experts from Lab (shared regionally)

Cost Estimation - SRF

- Substantial SRF progress since TESLA cavity / Nb sheet cost studies (2000-2002)
 - Gradient performance
 - Global expertise
 - XFEL contract
- Issued five-point 'Request for Information' to 12+ vendors
 - 2 March 2011 (basis XFEL specification)
 - http://www.linearcollider.org/GDE/Project-Managers/2011-Visit-to-SCRF-cavity-cryomodulemanufacturers
- Expect direct responses May '11

GDE - SRF Industry partnership

- in lieu of (or together with) contracted in-depth studies: five-point request
 - 1. Cost estimates, with breakdown, for 6 cases (one absolute (with breakdown); other 6 relative)
 - 2. Factory siting recommendation
 - 3. Project / industry shared responsibilities
 - Deliverables
 - 5. Consortium (multi-industry / lab) recommendation
- to be discussed and received in time for PAC review (Taipei, 19-20.05)
- Satellite meeting SRF 2011 Chicago (24.07)

Schedule: Cost Estimation SRF

PAC summary 05/11.2011

• SRF 2011 07.2011

Preliminary analysis 12.2011

TDR Tech Baseline review early 2012

Issues:

- Extrapolation to realistic production models
- Balancing multiple production models
- Providing a link to the RDR cost

PAC Report (11.2010)

ILCSC Project Advisory Committee

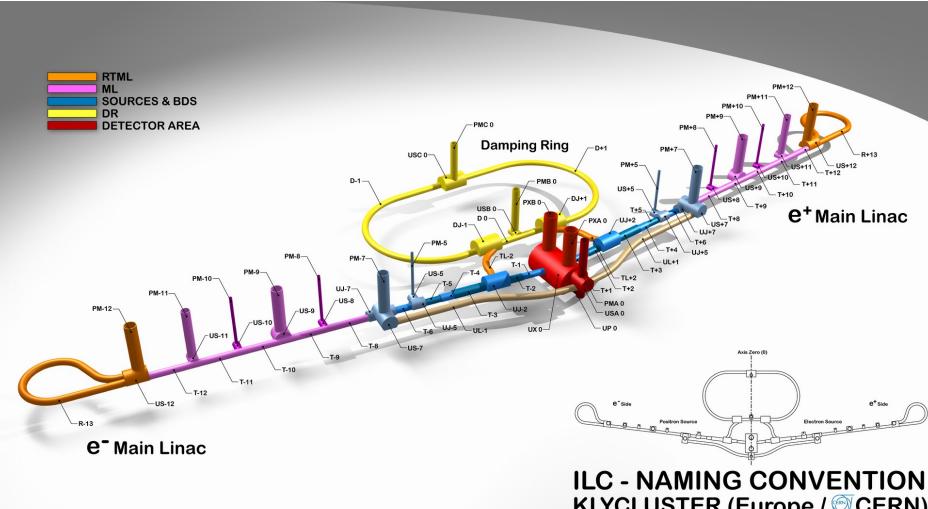
L. Evans, Chair

"chemistry is under control" "if material and welds are good ... cavities are good"

"big strides":- Automate the process to get 100% yield

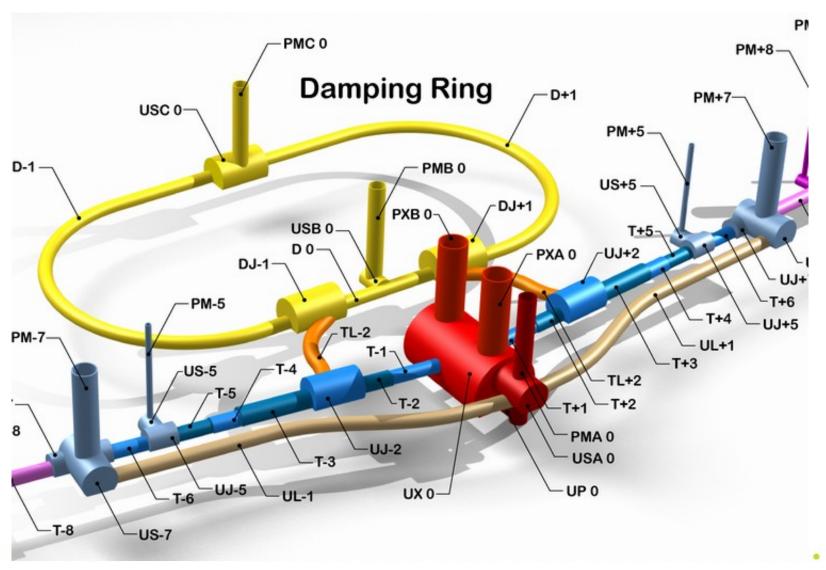
"policy for industrialization will govern the R&D"

"not so positive for cryomodule..." field emission remains a problem



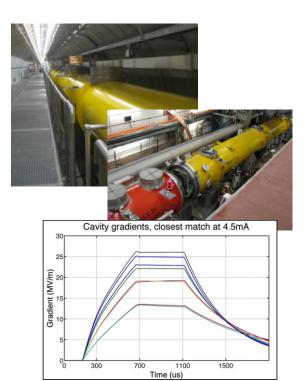
CFS – the other cost driver

ALCPG Eugene, 23.03.2011 Nick Walker 39


Ready to build...?

KLYCLUSTER (Europe / CERN) Schematic 3D - 20110311

Central Region


Beam Test Facilities

Beam Test Facilities

- TTF/FLASH (SCRF linac beam tests)
- CesrTA (Electron Cloud and low-emittance)
- ATF/ATF2 (Damping ring and FFS)

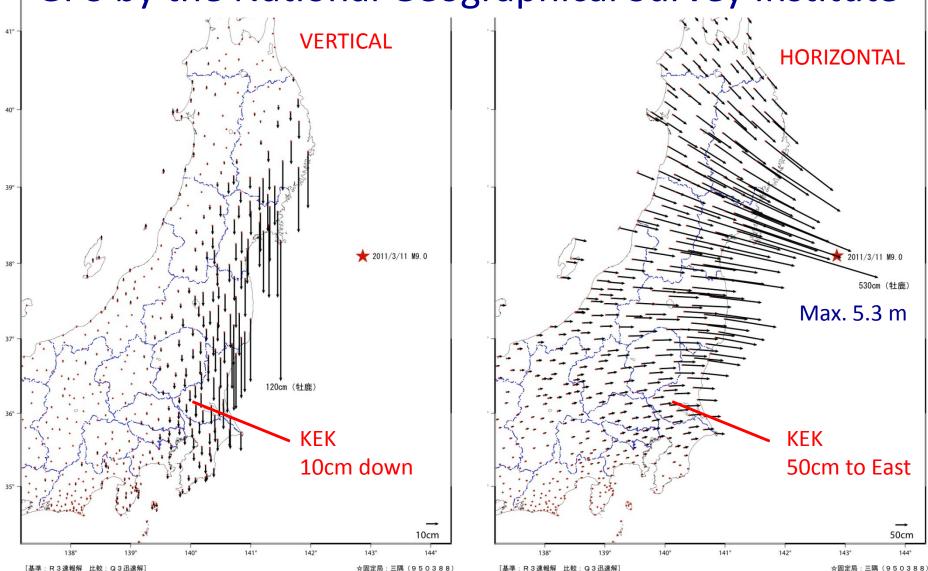
CesrTA (Cornell)


TTF/FLASH (DESY)

Beam Test Facilities

- TTF/FLASH (SCRF linac beam tests)
- CesrTA (Electron Cloud and low-emittance)
- ATF/ATF2 (Damping ring and FFS)

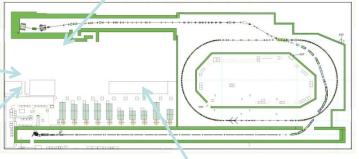
CesrTA (Cornell)


TTF/FLASH (DESY)

国土地理院

基準期間:2011/03/01 21:00 - 2011/03/09 21:00 比較期間: 2011/03/11 18:00 - 2011/03/11 21:00

基準期間: 2011/03/01 21:00 - 2011/03/09 21:00 比較期間: 2011/03/11 18:00 - 2011/03/11 21:00



国土地理院

Facility Damages

ATF/ATF2 Outlook

- FORTUNATEY damage appears mostly superficial
 - infrastructure remains intact
- However, damage assessment continues. Still much to repair!
- ATF2 would have run for another 2 months until summer shutdown
 - restart in October 2011
- Most optimistic: Fall of 2011 (??)

ALCPG Eugene, 23.03.2011 Nick Walker 47

In Summary

In Summary (1/2)

- GDE working towards successful completion of its mandate
- TD Phase 2 now underway
- 2011
 - final outstanding baseline decisions
 - SCRF & CFS Cost estimation
 - TeV upgrade study
- 2012
 - Design and cost consolidation
 - Write the TDR

In Summary (2/2)

- Identification of R&D beyond 2012
 - SCRF test infrastructure
 - Ultra-high gradient R&D
 - Beam Test Facilities

– ...

 LHC – outstanding progress! Guaranteed to have many answers in 2013

We must – and will be – prepared ☺

See you at LCWS'11 – Granada – Sept 2011