High Gradient Cavities: Cost and Operational Considerations

TDR: is it a Technical Design Report or a

- TDR Test Discrepancy Report
- TDR The Dirty Rag
- TDR Contents of Arvid tape
- TDR Transaction Data Repository
- TDR Total Death Race
- TDR Total Debt Restructuring
- TDR Tasks, Duties, and Responsibilities
- TDR Task Description Report
- TDR Timmy Don't Read
- TDR Technical Design Review
- TDR Tom De Ridder
- TDR Time Domain Reflectometry
- TDR Technical Documentation Report

Chris Adolphsen

Cryomodule and Cryoplant Costs

Pulse Length: Tfac = (Tb + Tfo*g/go) / (Tb + Tfo)

Coupler Cryo Load: Pfac = (g/go) * (Tb + 2*Tfo*g/go) / (Tb + 2*Tfo)

Cavity Cryo Load: Gfac = $(g^2/go^2)^*Qfac^*(Tb + 1.1^*Tfo^*g/go)/(Tb + 1.1^*Tfo)$

Cryomodule Cost = (C_module + C_inst + C_vac) * (go/g)

Cryoplant Cost = (C_plant + C_dist)*[(0.52 + 0.10*Pfac + 0.38*Gfac)) * (go/g)]^0.6

RF System Cost

Pulse Length: Tfac = (Tb + Tfo*g/go)/(Tb + Tfo)

Number of klystrons and modulators independent of gradient – number of cavities fed per klystron scale as go/g.

RF System Cost = C_mod * (0.45 + 0.55*Tfac) + C_kly * (0.74 + 0.26*Tfac) + (C_dist + C_llrf + C_global) *(go/g) + C_inst * (0.3 + 0.7*(go/g))

Civil Cost

Pulse Length: Tfac = (Tb + Tfo*g/go)/(Tb + Tfo);

Assume electrical and cooling cost scale as load, number of shafts, and

surface buildings constant

Civil Cost = C_shaft + C_tunnel *(go/g) + C_elect*Tfac

+ C_cooling*(0.22 + 0.78*Tfac)

Americas ILC Linac Cost Versus Cavity Gradient and Qo

More Optimal 30 mm LL Cavity Design

	an	bn	Es/Ea	Hs/Ea	Bs/Ea (mT/(MV/m))	Ea ((MV/m)/180mT)	
TTF cell (a=35mm)	12.00	19.00	1.984	0.00332	4.168	43.19	
Original LL (a=30mm)	7.60	10.00	2.303	0.00287	3.608	49.88	
opt-3 (a=30mm) 0mm slope	10.50	17.10	1.984	0.00295	3.712	48.49	-
a=30mm 0mm slope	11.80	20.80	1.894	0.00300	3.770	47.75	\Leftrightarrow

5% Es reduction 10% Hs reduction

Reduces cryoload by 10%, rf pulse length by 6%, and site power by ~ 4%, but short-range transverse wakes ~ 85% larger

High Gradient Operational Challenges

 Stronger Lorentz Force Detuning (LFD) to Cavity Bandwidth (BW) Ratio: For TESLA cavities:

Gradient (MV/m)	Current (mA)	Qext (10^6)	BW (Hz)	LFD (Hz)	LFD/BW
31.5	9.0	3.5	370	990	2.7
31.5	4.5	7.0	185	990	5.4
40	4.5	8.9	146	1600	11
50	4.5	11.1	117	2500	21

- BW > 1e7 required for CW ERLs and proton linacs, but LFD is constant after slow ramp-up
- Could stiffen cavity but constrained by thermal runaway if make the walls thicker

High Gradient Operational Challenges (cont)

- For same field emitters, much higher dark currents
 - Limited to 50 nA per cavity to keep loading < 0.1 W/m
 - However, reducing field emitters seems necessary to achieve high gradient, so this may not be a separate problem
- For same current, input power increases as gradient
 - At 9 mA and 31.5 MV/m, approaching power limits of couplers
 - However at 4.5 mA, the input power at 63 MV/m would be the same

Higher Frequency Cavities

For same cavity wall thickness, gradient becomes limited by thermal run-away due to higher surface resistance, Rs, which scales as frequency^2

Thermal Breakdown Data and Simulation for the FNAL 3.9 GHz 'Linearizer' Cavities Built for FLASH

Comparison of measured data for cavity #5 (dashed) with model for the three thermal cases. Case 1 - RED, Case 2 - BLUE, Case 3 – BLACK. Solid lines are for the constant surface magnetic field model, dotted for real fields calculated by HFSS.

h_k=0.3 W/cm²K at 1.8K.

3.9 GHz Vertical Test Results: Qo vs Gradient

Gradient (MV/m)

Bottom Line: Cavity and cryomodule costs likely lower at 2.6 GHz and 3.9 GHz, but need to optimize cavity wall thickness for thermal limit and LFD, and evaluate energy where increased wakes from the smaller aperture could be tolerated.

From 10/2007

Sergei Nagaitsev: What we will NOT learn from the ILC SRF Facilities by 2011

- It is likely that by end of 2010 neither facility [NML or STF] will have an rf unit with Type 4 CM's
- NML will not operate at 5 Hz rep rate.
- We (NML or STF) may have at least one CM operating at 31.5 MV/m
 - Need to verify gradient with beam proof of ILC CM existence!
- Neither lab will have a separate CM test stand
 - Thus no rapid CM tests with pulsed rf power
- NML and STF will not validate system optimization for the best "value engineering", such as
 - Beam dynamics and quadrupoles system design
 - Cryomodule design with cryogenics system design

What we will NOT learn ... (continued)

- Will not validate some interface parameters:
 - Plug compatibility
- We will have difficulties with:
 - Long-term reliability tests of CM components, such as tuners, piezos, couplers
 - Evaluating HOM absorption and propagation
 - Need to do it with an ILC CM's
 - Static and dynamic heat loads
 - NML temporary cryo system is not properly instrumented; wrong temperatures

From 10/2007

H. Weise: XFEL Components

XFEL needs

 808 cavities for
 101 accelerator modules, i.e.
 808 frequency tuners,
 808 RF main input couplers,
 1616 HOM pick-ups,
 101 HOM absorbers
 etc.

First 5-10% of modules in 2010, majority in 2011 / 2012

Tunnel installation finished spring 2013

- Overall rate: 1 module per week for 2 years
- Orders will be placed not later than 2009, so the prices are known on the basis of 5% ILC
- Component tests start in Q3/2010

End of 2010 approx.5 modules, 40+40 cavities, coupler, ...Mid of 2011 approx.30 modules, 300 cavities, coupler ...