

Planning the Push-Pull

Marco Oriunno, SLAC

First idea (~2006)

The Challenge

- Unprecedented for the HEP community
- Underground operations ~100 m
- Large Masses ~15'000 T
- Precision mechanism ±1 mm
- Fast interchange ~ few days
- Very low vibrations

Beam Delivery System Req.

• A small L* (3.5 m - 4.5 m) to maximize luminosity, and thus the last machine elements penetrate inside the detector.

- Small size beams (nm level), requiring extreme stability of the BDS.
- A beam fast Feed Back system is also mandatory to correct movements at higher frequencies.
- Pre-alignment system is needed to correct for slow drifts

Push-Pull solutions (LoI)

SiD

LCD+GLD = ILD

Conceptual Design by features

Functional requirements

ILC-Note-2009-050 March 2009

Final Doublet Elapsed time for an exchange of detectors

Roll out time

Roll in time

Cryogenic safety assumptions

Vacuum

Beam feedback system

Beam-Beam parameter space

QD0 support and alignment

Length of IR Hall

Beam height above the reinforced floor of the IR cavern Radiation environment

Magnetic environment

The garage area housing the off beam line detector The beam line

The area around the on beam line detector

SiD with long legs

Half platforms in lateral alcoves

SiD and ILD with or without a platform ?....

Trade off study

SiD on Platform

ILD without Platform

Mandatory requirements	SiD	ILD
Design Change Impact	None	High
Vibrations Amplification	Unkwon	Unkwon

Vibrations

Most acute luminosity loss mechanism due to relative jitter of final focusing magnet elements : <u>Ground Motion and Mechanical vibration sources</u>

ILC has Active Fast Feedback based on beam trajectory after collision

Lumi loss due to beam offset in SD0 (beamsize growth) and IP misalignment of beams

ilc

Vibrations : Absolute, Relative and Coherent and motion

Jo = 0th Bessel function L= distance between points *v* = speed of sound in rock, ~3 km/s

$$\rho(\omega,L) = p(\omega) 2\{1 - \operatorname{Re}[N_{12}(\omega,L)]\}.$$

Relative displacement spectrum

FIG. 3. Correlation spectra of ground motion measured at CERN in the LEP tunnel [7]. The distances between sensors were 225, 500, 1000, and 2000 m.

Figure 3: Measured (symbols) and modeling spectra $p(\omega)$ of absolute motion and $p(\omega, L)/2$ of relative motion for the 2 a.m. SLAC site ground motion model.

QD0 Supports

Response amplitude (Comparison of computations and measurements)

SiD Vibration Model : 1 degree of freedom M,K,C oscillator

 $f_{n} = \sqrt{\frac{f_{f}^{2} f_{p}^{2}}{f_{f}^{2} + f_{p}^{2}}}$ 1st mode system

 $f_f = 1^{st}$ mode SiD foot

 $f_p = 1t$ mode platform

c = 2%

		6 Hz, supported edges		5 Hz
f _{foot} = 10 Hz from FEA,	f _{platform} =	15 Hz, int. support, door- on-platform	f _n =	8 Hz
		30 Hz, int.support, door- on-barrel		9 Hz

Random vibration Studies : SiD O.K. on the floor, no platform

IP Region Final Doublet

Trade off study - Conclusion

SiD with Platform

ILD with Platform

Mandatory requirements	SiD	ILD
Design Change Impact	None	High
Vibrations Amplification	Low	Low

SiD Platform Functional Requirements

SiD nominal mass: Barrel 5000 T; (each) Door 2500 T

Dimensions:

Z = 20.0 mX = 20.0 m Delta Y = 9 m (Top of Platform to beamline)

Positioning Tolerance on beamline

Consider points Z=+-max, X=0. Position to + 1mm wrt references in X,Y,Z Consider points Z=+-max, X=+-max: Position to +- 1 wrt references in Y.

Static Deformations: <+-2 mm

Vibration Transfer Function from ground : Amplification < 1.5 between 1 and 100 Hz.

Seismic stability: Appropriate for selected site. (Beamline must be designed with sufficient compliance that VXD will survive)

SiD Platform Functional Requirements

Wall clearance ~10 mm. Platform comes to side wall, there is no apron or apron matches platform elevation.

SiD Platform Functional Requirements

Detector Top View

20000

Platform Top View

Surface Features: Steel Surface near legs Steel rails for doors "Receptacles" for tie seismic tiedowns of SiD Barrel and Doors Removable Safety railings

Transport equipment shall not eject particulates that reach platform surface (need spec on how much)

Platform Simulation

Benchmark with exp.data

The CMS Plug

ΪĻ

Experimental Vibration measurements – CMS Plug

I

Integrated Displacement (r.m.s.)

Conclusions

- Platforms are a technically acceptable solutions for the push pull, which preserves the respective design of the detectors and does not amplify the ground vibrations.
- The platforms must be designed according to a set of Functional Requirements, specifying the static and dynamic performances. These requirements will be defined by the detectors.
- The design and construction of the platforms becomes a task of the CFS group, which will develop the project along the requirements list and together with the detectors.

The work ahead

- The effects of vibrations on beam stability remain a subject which need further studies.
- Benchmarking of the FEM and experimental data is in progress : good results so far
- Start the optimization of the Experimental Area, integration of the platforms
- Decide on a Push-pull mechanism : Rollers, Air-pads, hydraulic jacks, etc.
- $\,\circ\,$ All above only achievable as common task MDI / CFS