

The Bean: BeamCal Instrumentation ASIC

Angel Abusleme¹, Angelo Dragone² and Gunther Haller²

March 20th, 2011

1: Pontificia Universidad Católica de Chile 2: SLAC National Accelerator Laboratory

Outline

- Introduction
- The Bean Design
- Test Results
- Conclusion

Introduction

Context: Instrumentation for the Very Forward Region of the ILC

- Four sub-detectors:
 - LumiCal
 - GamCal
 - BeamCal
 - Pair-monitor

http://www-zeuthen.desy.de/ILC/fcal/

The BeamCal Calorimeter

- 30 layers, 45360 pixels per side
- BeamCal mission
 - Extend the calorimeter to small polar angles
 - Reduce backscattering from pairs into the detector center
 - Provide a low latency output for beam tuning

http://www-zeuthen.desy.de/ILC/fcal/

BeamCal Instrumentation ASIC Specs

1: This specification depends on the final detector design

Low Noise Design Considerations

- 308 ns period → noise dominated by series component
 - Must limit weighting function slopes
- CSA bandwidth suffices for limiting negative slope
- Two choices to limit positive slope:
 - CDS
 - Slow reset release

The Bean Prototype: System-Level Design

- 180-nm TSMC process
 Eully independent chapped
- Fully independent channels
- Digital memory to store 32 channels x 2820 x 10-bit results per ASIC
- Precharge circuit for the charge-sensitive amplifier (CSA) to maximize output swing
 - CSA precharger doubles as on-chip pulser for electronics calibration
- SC adder followed by a dedicated ADC
- Gated reset for quick baseline restoration
 - This has noise consequences in DCal mode

The Bean Design

The Bean Detailed Block Diagram, Single Channel

CSA & Feedback Network

Page 11

Rail-to-Rail Buffers

10-bit SAR ADC

- Fully differential SAR architecture
- 16-fF MIM unit capacitances
 - 2-fF MOM unit cap ADCs were designed and successfully tested, too
- 5 bits thermometer-coded, 5 bits binary-coded
- $P_{AVG} = 200 \ \mu W @ 3.25 \ MS/s$

Switched-Capacitor Adder

Amplifier for Switched-Capacitor Circuits^{*}

Signal Buffer and Level Shifter

Switched-Capacitor Integrator

P_{avg} = 850µW *Reset transistors not shown

The Bean Prototype: Layout

- 72 pads, 2.4mm x 2.4mm (including pads)
- 7306 nodes, 35789 circuit elements
- 360-µm channel pitch (including power bus)
- 3 charge amplifiers, 4 x 10-bit, fully diff. SAR ADCs, 1 SC adder, 3 SC filters, etc.

Test Results

Functionality Test: Waveforms

CSA Output, standard data taking Nominal speed CSA Output and reset signal, Calibration mode, Nominal speed

Functionality Test: Waveforms

Filter output, single ended 1/2 speed

Filter output, fully differential 1/2 speed

Linearity Test Results, SDT Mode

0 - 40pC input range

Linearity Test Results, DCAL mode w/Filter

0 - 0.74pC input range

0 - 0.86pC input range

Crosstalk Tests

Bandwidth Test, SDT Mode

- Input injected on 10th cycle only
- Digital output recorded, nominal speed

Bandwidth Test, DCal Mode

- Input injected on 10th cycle only
- Digital output recorded, nominal speed

Weighting Function Measurement, SDT Mode

Time resolution: 4.8 ns

Weighting Function Measurements, DCal Mode

Noise Filtering, Increasing Input Capacitance

Test done at 1.63 MHz clock (32x slower than nominal speed)

- Filter reduces series noise by 26% (fixed reset scheme)
- Filter + digital CDS reduces series noise by 73%
- Measurements deviate 0.52% from weighting functions calculations

Noise Measurements

- SDT mode
 - Channel noise was computed for different input levels
 - An average of 0.6 LSB rms was measured
 - Noise for slow and fast reset are similar
 - But measured weighting function analysis predicts that slow reset cuts series noise power by 20%
 - Conclusion: CSA does not contribute significantly to the channel noise in standard data taking mode
- DCal mode
 - Channel noise was computed for zero input
 - Input capacitance was estimated as 75.5 pF (88.8% higher than nominal), so noise measurement needs to be scaled accordingly
 - Noise was estimated at
 - 0.62 LSB no filter, and
 - 1.41 LSB with filter
 - Filter removes about 2/3 of the series noise when operating at nominal speed, but adds about 1.35 LSB of noise due to its amplifier noise

Fast Feedback Adder Test

- Adder proved full functionality at nominal speed of operation
- Gains from individual channels to Adder range from 0.329 to 0.345

Conclusion

- A PP instrumentation ASIC for 100% occupancy has been successfully designed and tested
- CSA precharge circuit allows to increase output swing, improving SNR
- Slow reset-release technique effectively halves measured noise in DCal mode
- SC filtering has been proven as a solution for pulse processing in PP experiments
- The low latency adder output meets the required specifications for beam diagnostics purposes

Future work

- Add power cycling feature
- Include small capacitors ADC
- Buffer references internally
- Study radiation hardness

Acknowledgments

- Professor Bruce Wooley (Stanford U.)
- Professor Martin Breidenbach (SLAC)
- Professor Boris Murmann (Stanford U.)
- Dr. Dietrich Freytag (SLAC)

Thank you!