

Detuning compensation during FLASH 9mA tests

Mariusz Grecki for LLRF collaboration

Agenda

- Lorentz Force Detuning and its compensation
- Piezo Control System at FLASH
 - Detuning calculation
 - Control algorithm
- Results of 9mA tests related to piezos
- Conclusion

Lorentz Force Detuning

uency

Piezos Installed in ACC1,3,5,6,7

Producent ratings	Noliac	PI ceramic		
Model:	SCMAS/S1/A/10/10/30/200/42/60 00	P-888.90		
Cells:	8	8		
Voltage:	< 200 V	< 120 V		
Blocking force:	6 kN	3 kN		
Size:	10 mm x10 mm x 30 mm	10 mm x10 mm x 35 mm		
Capacitance:	6 μF	12 μF		

Piezos Capacitance (2K)

ca∨ity	piezo	model	ACC3/M7	model	ACC5/M5	model	ACC6/M6
1	1	PI	4,93uF	Noliac	2,1uF	PI	4,13uF
	2	-	Unavailable	-	Una∨ailable	PI	4,45uF
2	1	PI	4,61uF	Noliac	2,22uF	PI	4,4uF
	2	-	Unavailable	-	Una∨ailable	PI	4,2uF
3	1	PI	4,91uF	Noliac	2,28uF	PI	4,21uF
	2	-	Unavailable	-	Una∨ailable	PI	4,1uF
4	1	PI	4,6uF	Noliac	3,12uF	PI	3,86uF
	2	-	Unavailable	-	Una∨ailable	PI	4,2uF
5	1	Noliac	2,6uF	Noliac	2,2uF	PI	4,22uF
	2	-	Unavailable	-	Una∨ailable	PI	4,28uF
6	1	Noliac	2,13uF	Noliac	2,13uF	PI	3,73uF
	2	-	Unavailable	-	Una∨ailable	PI	4,41uF
7	1	Noliac	2,22uF	Noliac	2,19uF	PI	4,69uF
	2	-	Unavailable	-	Una∨ailable	PI	4,41uF
8	1	Noliac	2,21uF	Noliac	2,17uF	PI	4,31uF
	2	-	Unavailable	-	Una∨ailable	PI	4,2uF

radio frequency 💻

FLASH and Piezo Control

Detuning measurements (1)

$$\Delta f = \frac{1}{2\pi} \left(\frac{d}{dt} \varphi_c + 2 \omega_{1/2} \frac{\left| V_{for} \right|}{\left| V_c \right|} \sin \left(\varphi_{for} - \varphi_c \right) \right)$$

 $\Delta f - detuning,$ $V_c, \varphi_c - field amplitude and phase,$ $\omega_{1/2} - cavity bandwidth$ $V_{for}, \varphi_{for} - forward power amplitude and phase$

Detuning measurements (2)

Detuning calculated for 10 pulses (c1@acc7 02-05-2011 11:33:29)

Detuning calculation (3)

c5@acc7 - cavity well tuned by piezos

c5@acc7 - shortening the RF pulse

Transfer function (ACC6 cav. 1)

Dynamic response of piezo

• No RF in the module

Linear Collider Workshop of the Americas, 22.03.2011

0.5

 Piezo cav1@acc7 excited by sequence of sinusiodal pulses (A=70V, f=200Hz, frep=10Hz)

 After input pulses have been stopped the piezo response recordered (fs=5.6KHz, trecording=40ms)

2.5

– M.Grecki

FFT ot the piezo sensor response (1)

FFT ot the piezo sensor response (2)

Piezo control characterization

Pulse amplitude vs frequency

cav1@acc6

Piezo control for LFD compensation

- Sinusoidal excitation with adjustable
 - -Frequency
 - -Pulse number
 - -Amplitude
 - -Time position
 - -DC pedestal

- Amplitude \rightarrow dynamic detuning
- DC pedestal \rightarrow static detuning
- Time position \rightarrow curvature

Detuning compensation result

c1@acc6: measured over 20 pulses. The achieved parameters: dynamic detuning 0.3190Hz static detuning: -1.1760Hz, curvature: 0.1774 a.u. (linear and quadratic approximation covers in the picture). Settings for the piezo: 200Hz, 1 pulse, 19.12ms after A2, amp=-23.06V, DC off=-36.62V

Automatic tuning procedure for 2 modules

Detuning measurements with beam

$$\Delta f = \frac{1}{2\pi} \left(\frac{d}{dt} \varphi_c + 2 \omega_{1/2} \frac{|V_{for}|}{|V_c|} \sin(\varphi_{for} - \varphi_c) + 2 \omega_{1/2} \frac{|V_b|}{|V_c|} \sin(\varphi_b - \varphi_c) \right)$$

 $\begin{array}{l} \Delta f - detuning , \\ V_c, \varphi_c - field \ amplitude \ and \ phase , \\ \omega_{1/2} - cavity \ bandwidth \\ V_{for}, \varphi_{for} - forward \ power \ amplitude \ and \ phase \\ V_b, \varphi_b - forward \ power \ amplitude \ and \ phase \end{array}$

 $V_b = C_b I_b$

 C_b -calibration factor I_b -beam current (measured at toroid)

02-05-2011 11:33:29 - 11:34:11

Piezo sensors signals

DES

low level radio frequency

Conclusion

- Piezos can tune the LFD up to few hundreds of Hz. They can be used also to tuning cavities in the limited range.
- In the frame of 9mA experiment the automatic procedure for LFD compensation has been developed.
- Detuning calculation without beam agrees well with detuning measured at the end of the RF pulse. Detuning calculation in the presence of the beam requires calibration of the beam transients.
- The meaning of the sensor signals (how it relates to detuning) is still not clear. It requires further analysis.

