Light-flavored Squark Production at CLIC

Frank Simon MPI for Physics & Excellence Cluster 'Universe' Munich, Germany

Linear Collider Workshop of the Americas March 2011, Eugene, OR, USA

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Outline

- Squark production and decay at CLIC
- Techniques for mass measurements
- Experimental challenges
 - SM background suppression
 - $\gamma\gamma \rightarrow$ hadrons background
- Summary/Outlook

2

ЪШ

SQuarks: The Domain of Multi-TeV Colliders

- In many mSUGRA models the squarks are among the heaviest sparticles
 - Requires collision energies beyond I TeV for pair production
 - The light-flavored quarks are special: Left and right squarks don't mix to form two mass states

- typically no distinction between first and second generation:
 - up, charm squarks and down, strange squarks have equal masses
 - small mass difference between uptype and down-type
 - mass difference between left- and right squarks

Precise squark mass measurements are an important ingredient for SUSY spectroscopy!

Light-flavored Squark Production & Decay

- The CLIC benchmark scenario:
 - Light-flavored (u, d, s, c) Right-Squark mass ~ 1.12 TeV
 - Neutralino mass 328 GeV
- Right-Squarks as benchmark scenario:
 - Decay exclusively into neutralinos: right-squarks don't carry weak isospin -No coupling to Winos
 - Simple event signature: Two highly energetic jets, missing energy
 - SM-Background can be a challenge!

3 TeV CLIC cross section (u, d, s, c): ~ 1.45 fb (almost) exclusive decay $\tilde{q}_R \rightarrow q \chi_1^0$ Production ratio up / down type: 4:1

Light-flavored Squark Production - Signal & Background

Particular emphasis on barrel calorimetry, tracking and particle flow

- Signal flat in cosθ
- Backgrounds peak forward and backward
 - Dominating background
 SM 4 fermion final states xsect ~ 10 pb - almost 4 orders of magnitude above signal

Light-flavored Squark Production at CLIC ALCPG2011, Eugene, OR, March 2011

Excelle

Mass Measurement Techniques

Light-flavored Squark Production at CLIC ALCPG2011, Eugene, OR, March 2011

Frank Simon (frank.simon@universe-cluster.de)

ПШ

Mass Measurement Techniques

• Parameters of the used SUSY scenario:

 $m(\tilde{u}_R, \tilde{c}_R) = 1126 \,\text{GeV} \quad m(\tilde{d}_R, \tilde{s}_R) = 1116 \,\text{GeV} \quad m(\chi_1^0) = 328 \,\text{GeV}$

• Also used for illustration purposes: SPS1b: $m(\tilde{u}_R, \tilde{c}_R) = 846 \,\text{GeV}$ $m(\tilde{d}_R, \tilde{s}_R) = 843 \,\text{GeV}$ $m(\chi_1^0) = 162 \,\text{GeV}$

These masses determine location of kinematic edges in distributions

The "classic" observable:

Distribution of jet energies

• Simultaneous measurement of squark and neutralino masses

Mass Measurement Techniques

• Parameters of the used SUSY scenario:

 $m(\tilde{u}_R, \tilde{c}_R) = 1126 \,\text{GeV}$ $m(\tilde{d}_R, \tilde{s}_R) = 1116 \,\text{GeV}$ $m(\chi_1^0) = 328 \,\text{GeV}$

• Also used for illustration purposes: SPS1b: $m(\tilde{u}_R, \tilde{c}_R) = 846 \,\text{GeV}$ $m(\tilde{d}_R, \tilde{s}_R) = 843 \,\text{GeV}$ $m(\chi_1^0) = 162 \,\text{GeV}$

These masses determine location of kinematic edges in distributions

The "classic" observable:

Distribution of jet energies

- Simultaneous measurement of squark and neutralino masses
- Strong distortions of upper edge from beam energy smearing due to beamstrahlung
- both edges suffer from SM background,
 γγ → hadrons background strongly affects single jet observables

Excellence Cluste

Mass Measurement Techniques: Minimum Squark Mass

- Calculate the minimum squark mass allowed in an event, using
 - the measured jet three momenta (assuming massless quarks)
 - the neutralino mass (assuming it is known from other measurements)
 - the collision energy s

J.L Feng, D.E. Finnell, PRD 49, 2369 (1994)

Light-flavored Squark Production at CLIC ALCPG2011, Eugene, OR, March 2011

Mass Measurement Techniques: Minimum Squark Mass

- Calculate the minimum squark mass allowed in an event, using
 - the measured jet three momenta (assuming massless quarks)
 - the neutralino mass (assuming it is known from other measurements)

 \Rightarrow peaks at true squark mass: good for low statistics

 \Rightarrow reduced distortions from beamstrahlung

Light-flavored Squark Production at CLIC ALCPG2011, Eugene, OR, March 2011

Mass Measurement Techniques: M_C

- Several new techniques studied for LHC: Need independence from collision energy, typically use only transverse observables
- Interesting technique: A modified invariant mass, calculated from the four momentum of one quark and the parity-transformed four momentum of the other quark
 D.R. Tovey, JHEP 04, 34 (2008)
 - invariant under contra-linear boosts: works for back-to-back pair production of particles
 - at LHC, use a transverse form, use full 3D for lepton colliders
 - requires quark momenta and neutralino mass as input

upper edge of distribution given by:

$$M_C^{max} = \frac{m_{\tilde{q}}^2 - m_{\chi}^2}{m_{\tilde{q}}}$$

Mass Measurement Techniques: M_C

- Collision energy does not enter: Reduced sensitivity to collider energy spectrum (beamstrahlung enters due to boost along beam axis)
- Maximum at upper edge: Advantageous in environments with low statistics
- Simple tri-angular shape (without cuts and distortions): Potentially easy to fit

Signal & Background

Light-flavored Squark Production at CLIC ALCPG2011, Eugene, OR, March 2011

Frank Simon (frank.simon@universe-cluster.de)

ТUП

Signal, Background & Events

	Final State	σ (with ISR + BS)
Signal	qqχχ (u,d,s,c)	~ I.5 fb
SM Background	qq	~ 3000 fb
	αανν	~ I 500 fb
	qqee	~ 3300 fb
	qqev	~ 5300 fb
	ττνν	~ I 30 fb
SUSY	ΧΧννρρ	~ I.0 fb
	αqΙνχχ	~ 8.5 fb
	γqllχχ	~ 0.6 fb

still under study: qqll, qqvl for I = μ , τ

dominating contributions

- Present status:
 - First round of production of extensive samples of signal and background -Generator only, minor issues make regeneration necessary
 - Study with $\gamma\gamma \rightarrow$ hadrons background possible on generator level!
 - Second round of production ongoing including full detector simulation and reconstruction with overlaid $\gamma\gamma \rightarrow$ hadrons background
 - Full signal sample available, background statistically limited

Variables to Cut On - Event Properties

Variables to Cut On - Event Properties

Light-flavored Squark Production at CLIC ALCPG2011, Eugene, OR, March 2011

13 Excellence Cluste

Variables to Cut On - Event Geometry

 Accoplanarity: Two fermion SM background tends to be back to back, Signal (and four fermion background) is more smoothly distributed

TUT

Excellence Cluste

Variables to Cut On - Event Geometry

Excellence Cluste

Variables to Cut On - Jet Substructure

• Exploiting Particle Flow to the extreme: Using the number of identified particles within the jets

initial studies, further

investigations ongoing

Excellence C

Rejection of Physics Background

- First study of cuts on generator level (including jet energy smearing)
 - Cuts optimized to keep upper edge of minimum squark mass distribution for signal events intact

Rejection of Physics Background

- First study of cuts on generator level (including jet energy smearing)
 - Cuts optimized to keep upper edge of minimum squark mass distribution for signal events intact

Efficient rejection of physics background is possible without compromising the squark mass measurement!

Determination of Squark Mass

- Techniques for mass extraction under study Samples with different input mass
 - Fit of edge of distribution constant offset observed
 - Coming up: Template method: potential for higher precision, take mixture of up/down type squarks into account

- Study on an integrated luminosity of 2 ab⁻¹:
 - ~ 3000 signal events
 - ~ 6 M SM two fermion events
 - ~ 20 M SM four fermion events

ЪШ

- Study on an integrated luminosity of 2 ab⁻¹:
 - ~ 3000 signal events
 - ~ 6 M SM two fermion events
 - ~ 20 M SM four fermion events

CPU requirements for full simulation prohibitive!

- Study on an integrated luminosity of 2 ab⁻¹:
 - ~ 3000 signal events
 - ~ 6 M SM two fermion events
 - ~ 20 M SM four fermion events

A solution:

- Generator-level cuts to reduce amount of fully simulated events
- Requirement: No impact on study!
- Cut on missing pt (300 GeV) (higher cut will be imposed in analysis

CPU requirements for full simulation prohibitive!

- Study on an integrated luminosity of 2 ab⁻¹:
 - ~ 3000 signal events
 - ~ 6 M SM two fermion events
 - ~ 20 M SM four fermion events

A solution:

- Generator-level cuts to reduce amount of fully simulated events
- Requirement: No impact on study!
- Cut on missing pt (300 GeV) (higher cut will be imposed in analysis

Reduction of sample by I order of magnitude!

- Study on an integrated luminosity of 2 ab⁻¹:
 - ~ 3000 signal events
 - ~ 6 M SM two fermion events
 - ~ 20 M SM four fermion events

A solution:

- Generator-level cuts to reduce amount of fully simulated events
- Requirement: No impact on study!
- Cut on missing pt (300 GeV) (higher cut will be imposed in analysis

Reduction of sample by I order of magnitude! CPU requirements for full simulation prohibitive!

Alternative / complementary approach: No full simulation of high cross section backgrounds: Use generator level + smearing

Excellence Cluster

Impact of Beam-Induced $\gamma\gamma \rightarrow$ Hadrons Background

Background: Massive Impact

• Beam related background from $\gamma\gamma \rightarrow$ hadrons processes adds significant energy to events, in particular in the forward region

I TeV Z \rightarrow uds + $\gamma\gamma \rightarrow$ hadrons background

~ 60 BX, I.4 TeV

realistic timing assumptions: 200 GeV

Frank Simon (frank.simon@universe-cluster.de)

Coping with Background: Jet Finding

- The level of background being picked up with the signal depends on the jet finder
 - Distance measure defines which particles get picked up
 - Classical k_t algorithm ("Durham", or $e^+e^--k_t$): $\cos\theta_{ij}$ defines distance, together with full particle energy
 - Hadron collider k_t algorithm: $\Delta \phi$, $\Delta \eta$ defines distance, together with transverse momentum \Rightarrow "Expansion" of distances in forward region

Light-flavored Squark Production at CLIC ALCPG2011, Eugene, OR, March 2011

Excellence Cluster

Coping with Background: Total Energy

- Total reconstructed energy in both jets stable even against high background contributions for hadron-k_t
- Massive impact for $e^+e^--k_t$: Complete additional energy gets picked up

Studies on generator level, with background overlayed - 5 to 10 bx realistic with cuts

Coping with Background: Total Energy

- Total reconstructed energy in both jets stable even against high background contributions for hadron-k_t
- Massive impact for $e^+e^--k_t$: Complete additional energy gets picked up

Studies on generator level, with background overlayed - 5 to 10 bx realistic with cuts

Coping with Background: Mass Measurement

• Distributions used for mass measurements suffer distortions from excessive background - Compromises mass measurement!

Jet finder can mitigate impact, provide stable measurements!

Coping with Background: Mass Measurement

 Distributions used for mass measurements suffer distortions from excessive background - Compromises mass measurement!

Jet finder can mitigate impact, provide stable measurements!

Summary & Outlook

- The study of light-flavored squarks is an integral part of SUSY spectroscopy
 - Right-squarks have potentially very simple two body decays
- Several techniques exist for the mass measurement of particles with semi-invisible two-body decays
 - Classic jet energy endpoints suffer significantly from beamstrahlung
 - More sophisticated observables using neutralino mass appear promising
- A first generator-level study including SM and SUSY backgrounds
 - Initial cut-based study shows high signal purity can be reached
 - I% mass resolution seems feasible
- Influence from high $\gamma\gamma \rightarrow$ hadrons background can be controlled by jet finding
- Full mass production in preparation Some backgrounds potentially only on generator level

