To Prove SUSY,We Will Need the ILC!

M. Perelstein, LEPP/Cornell U.

March20, 20II
ALCPG || Workshop, U. of Oregon, Eugene

Blanke, Curtin, MP, I004.5350 [hep-ph], PRD

Anatomy of Standard Model Extensions at the Electroweak Scale

Anatomy of Standard Model Extensions at the Electroweak Scale

Anatomy of Standard Model Extensions at the Electroweak Scale

Anatomy of Standard Model Extensions at the Electroweak Scale

- To prove SUSY, test its heart: solution to hierarchy problem
- Focus on the top sector - largest SM Higgs coupling, must be at the weak scale (unless very finely tuned)

$$
0 \times \Lambda^{2}+\frac{3 m_{\tilde{t}}^{2}}{8 \pi^{2}} \log \Lambda+\ldots
$$

- Why does it work:

$$
\mathcal{L}_{\mathrm{MSSM}}=y_{t} h \bar{t} t+y_{t}^{2} h^{2}\left(\left|\tilde{t}_{L}\right|^{2}+\left|\tilde{t}_{R}\right|^{2}\right)+\ldots
$$

The same constant - sharp prediction! Test it?

But: $\quad h=v+h^{0}+\ldots$

Impossible to measure the quartic at the LHC!
[Challenge: prove me wrong!]

cubic: $y_{t}^{2} v h^{0}|\tilde{t}|^{2}$

Still, (probably) impossible to measure at the LHC!
[Maybe Higgsstrahlung in stop production? ILC?]

But also: $\quad V_{\text {SUSY }}=y_{t}^{2} v^{2}\left(\left|\tilde{t}_{L}\right|^{2}+\left|\tilde{t}_{R}\right|^{2}\right)$

Problem: many other contributions to stop masses (both SUSY and SUSY-breaking)

$$
V=\left(\tilde{t}_{L}^{*}, \tilde{t}_{R}^{*}\right) M^{2}\binom{\tilde{t}_{L}}{\tilde{t}_{R}}
$$

$$
M^{2}=\left(\begin{array}{cc}
\frac{m_{t}^{2}+M_{3 L}^{2}+\Delta_{u}}{\sqrt{2} m_{t} \sin \beta\left(A_{t}-\mu \cot \beta\right)} & \sqrt{2} m_{t} \sin \beta\left(A_{t}-\mu \cot \beta\right) \\
\underline{m_{t}^{2}+M_{t_{R}}^{2}+\Delta_{\bar{u}}}
\end{array}\right)
$$

Physical observables: mass eigenstates

$$
\begin{aligned}
& \tilde{t}_{1}=\cos \theta_{t} \tilde{t}_{L}+\sin \theta_{t} \tilde{t}_{R} \\
& \tilde{t}_{2}=-\sin \theta_{t} \tilde{t}_{L}+\cos \theta_{t} \tilde{t}_{R}
\end{aligned}
$$

Observables: $m_{t 1}, m_{t 2}, \theta_{t}$
[Convention: $m_{t 1}<m_{t 2}$]

Express (II) matrix element in terms of eigenvalues + mixing angle:

$$
m_{t}^{2}+\prod_{3 L}^{2}+\Delta_{u}=m_{t 1}^{2} \cos ^{2} \theta_{t}+m_{t 2}^{2} \sin ^{2} \theta_{t}
$$

BUT, Sbottom masses have the same structure with the same $M_{3 L}^{2}$ (enforced by $S U(2)_{L}$)

$$
m_{b}^{2}+M_{3 L}^{2}+\Delta_{d}=m_{b 1}^{2} \cos ^{2} \theta_{b}+m_{b 2}^{2} \sin ^{2} \theta_{b}
$$

Dimensionless version:

$$
\Upsilon=\frac{m_{t 1}^{2} \cos ^{2} \theta_{t}+m_{t 2}^{2} \sin ^{2} \theta_{t}-m_{b 1}^{2} \cos ^{2} \theta_{b}-m_{b 2}^{2} \sin ^{2} \theta_{b}}{v^{2}}
$$

SUSY Prediction (at tree level):

$$
\begin{aligned}
\Upsilon_{\text {SUSY }}^{\text {tree }} & =\frac{1}{v^{2}}\left(\hat{m}_{t}^{2}-\hat{m}_{b}^{2}+m_{Z}^{2} \cos ^{2} \theta_{W} \cos 2 \beta\right) \\
& = \begin{cases}0.39 & \text { for } \tan \beta=1 \\
\underline{0.28} & \text { for } \tan \beta \rightarrow \infty\end{cases}
\end{aligned}
$$

[Note: β dependence is $\tan ^{-2} \beta$ in the large- $\tan \beta$ limit]

Allowed range outside SUSY? Consider arbitrary perturbative quartic:

$$
\lambda|\tilde{t}|^{2} h^{2}, \quad \lambda \leq 16 \pi^{2} \quad \longleftarrow \quad \Upsilon<8 \pi^{2}
$$

Loop Corrections:

-We can define $\Upsilon(\mu)$ in terms of running masses/mixings evaluated at scale μ
-The tree-level sum rule applies to $\Upsilon(\mu)$ as long as $\mu \gg M_{\text {susy }}, v$

- Corrections are power-suppressed: $\mathcal{O}\left(M_{\text {susy }}^{2} / \mu^{2}\right)$

FIG. 2: Distribution of Υ for a SuSpect random scan of pMSSM parameter space. Scanning range was $\tan \beta \in(5,40)$; $M_{A}, M_{1} \in(100,500) \mathrm{GeV} ; M_{2}, M_{3},|\mu|, M_{Q L}, M_{t R}, M_{b R} \in$ $\left(M_{1}+50 \mathrm{GeV}, 2 \mathrm{TeV}\right) ;\left|A_{t}\right|,\left|A_{b}\right|<1.5 \mathrm{TeV}$; random $\operatorname{sign}(\mu)$. EWSB, neutralino LSP, and experimental constraints ($m_{H}, \Delta \rho, b \rightarrow s \gamma, a_{\mu}, m_{\tilde{\chi}_{1}^{ \pm}}$bounds) were enforced.

- "Order-one" corrections, due to the few-\% level cancellation in the tree-level sum rule
- Still, predicted range << range allowed outside SUSY
- The prediction gets sharper as more superpartner masses are measured!
(ILC would greatly help here - work in progress with Mike Saelim)

Measuring Stop and Sbottom Masses at the LHC

- We study two reactions: $p p \rightarrow \tilde{g} \tilde{g}, \quad \tilde{g} \rightarrow \bar{b} \tilde{b}, \quad \tilde{b} \rightarrow b \tilde{\chi}_{1}^{0}$

$$
p p \rightarrow \tilde{t}^{*}, \quad \tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}
$$

- Both reactions are "generic": they occur in large parts of parameter space (though not guaranteed, of course)
- To simplify things, we choose the MSSM parameter point such that both reactions (a) have branching ratios of I, and (b) have no significant SUSY backgrounds

$\tan \beta$	M_{1}	M_{2}	M_{3}	μ	M_{A}	$M_{Q 3 L}$	$M_{t R}$	A_{t}									
10	100	450	450	400	600	310.6	778.1	392.6	\triangleleft	$m_{t 1}$	$m_{t 2}$	s_{t}	$m_{b 1}$	$m_{b 2}$	s_{b}	$m_{\tilde{g}}$	$m_{\tilde{\chi}_{1}}$
:---	:---	:---	:---	:---	:---	:---	:---										
371	800	-0.095	341	1000	-0.011	525	98										

Process I: $\quad p p \rightarrow \tilde{g} \tilde{g}, \quad \tilde{g} \rightarrow \tilde{b} \tilde{b}, \quad \tilde{b} \rightarrow b \tilde{\chi}_{1}^{0}$

$$
\sigma(\tilde{g} \tilde{g})=11.6 \mathrm{pb} \boldsymbol{>} \text { high rate } \vee
$$

Final state: 4 b-jets + MET
sM Backgrounds: $Z / W+4 j, t \bar{t}$
Cuts (standard): 4 b-tags, plus

$$
\begin{gathered}
\mathbb{E}_{T}>200 \mathrm{GeV} \\
p_{T}^{b}>40 \mathrm{GeV} \\
p_{T}^{\max }>100 \mathrm{GeV} \\
\left|\eta^{b}\right| \leq 2.5
\end{gathered}
$$

After cuts: $\sigma_{\mathrm{sig}}=480 \mathrm{fb}, \quad \sigma_{\mathrm{bg}} \approx 35 \mathrm{fb} \leadsto$ Ignore backgrounds

Kinematic Edge

[6 values in each event, 4 are from wrong pairings]

Discard pair with largest $\operatorname{Max}\left[M_{12}, M_{34}\right]$ and require $\operatorname{Max}\left[\Delta \mathrm{R}_{12}, \Delta \mathrm{R}_{34}\right]<2.5$

[cleaned up with cuts]

Theory:

$$
M_{b b}^{\max }=\sqrt{\frac{\left(m_{\tilde{g}}^{2}-m_{b 1}^{2}\right)\left(m_{b 1}^{2}-m_{\tilde{\chi}_{1}^{0}}^{2}\right)}{m_{b 1}^{2}}}=382.3 \mathrm{GeV} .
$$

Kinematic Edge

[6 values in each event, 4 are from wrong pairings]

Theory:

$$
M_{b b}^{\max }=\sqrt{\frac{\left(m_{\tilde{g}}^{2}-m_{b 1}^{2}\right)\left(m_{b 1}^{2}-m_{\tilde{\chi}_{1}^{0}}^{2}\right)}{m_{b 1}^{2}}}=382.3 \mathrm{GeV} .
$$

Discard pair with largest Max $\left[M_{12}, M_{34}\right]$ and require $\operatorname{Max}\left[\Delta \mathrm{R}_{12}, \Delta \mathrm{R}_{34}\right]<2.5$

[cleaned up with cuts]

Measurement ($10 \mathrm{fb}-\mathrm{I}, \mathrm{I} 4 \mathrm{TeV}$):

$$
\begin{aligned}
& M_{b b}^{\max }=(395 \pm 5) \mathrm{GeV} \vee \\
& \times 3 \text { - systematics }
\end{aligned}
$$

MT2 and Subsystem MT2's

(b)

Theory predictions:

$$
\begin{gathered}
M_{T 2}^{210}(0)^{\max }=\frac{\left[\left(m_{b 1}^{2}-m_{\tilde{\chi}_{1}^{0}}^{2}\right)\left(m_{\tilde{g}}^{2}-m_{\tilde{\chi}_{1}^{0}}^{2}\right]^{1 / 2}\right.}{m_{\tilde{g}}}=320.9 \mathrm{GeV} \\
M_{T 2}^{220}(0)^{\max }=m_{\tilde{g}}-m_{\tilde{\chi}_{1}^{0}}^{2} / m_{\tilde{g}}=506.7 \mathrm{GeV} .
\end{gathered}
$$

[Note: we did not find large- \tilde{M} endpoints very useful, but did not try to optimize \tilde{M}]

Example: Subsystem MT2

Process 2: $p p \rightarrow \tilde{t \tilde{t}^{*}}, \tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$

$$
\sigma=2 \mathrm{pb}
$$

Final state: 2 tops (both had.) + MET SM Background: $Z t \bar{t} \quad \sigma=135 \mathrm{fb}$

No kinematic edges, single MT2 endpoint:

$$
M_{T 2}^{\max }(0)=\frac{M_{\tilde{t}}^{2}-M_{\tilde{\chi}_{1}^{0}}^{2}}{M_{\tilde{\chi}_{1}^{0}}}=336.7 \mathrm{GeV}
$$

Measurement ($100 \mathrm{fb}-\mathrm{I}, 14 \mathrm{TeV}$):

$$
(340 \pm 4) \mathrm{GeV}
$$

Put Everything Together:

Process I:

$$
\begin{aligned}
M_{b b}^{\max } & =(395 \pm 15) \mathrm{GeV} \\
M_{T 2}^{210}(0)_{\max }^{\max } & =(314 \pm 14) \mathrm{GeV} \\
M_{T 2}^{220}(0)_{\operatorname{meas}}^{\text {max }} & =(492 \pm 14) \mathrm{GeV}
\end{aligned}
$$

Process 2:

$$
M_{T 2}(0)_{\operatorname{meas}}^{\max }=(340 \pm 4) \mathrm{GeV}
$$

mass	theory	median	mean	68% c.l.	95% c.l.	process
$m_{b_{1}}$	341	324	332	$(316,356)$	$(308,432)$	I
$m_{\tilde{g}}$	525	514	525	$(508,552)$	$(500,634)$	I
$m_{\tilde{\chi}_{1}^{0}}$	98	-	-	$(45,115)$	$(45,179)$	I + LEP
$m_{t_{1}}$	371	354	375	$(356,414)$	$(352,516)$	$\mathrm{I}+\mathrm{II}$

TABLE I: Mass measurements (all in GeV), assuming Gaussian edge measurement uncertainties. We imposed the lower bound $m_{\tilde{\chi}_{1}^{0}}>45 \mathrm{GeV}$, which generically follows from the LEP invisible Z decay width measurement [17].

If we assume that tl and bl are exactly left-handed:

$$
\Upsilon_{\text {meas }}^{\prime}=\frac{1}{v^{2}}\left(m_{t 1}^{2}-m_{b 1}^{2}\right)=0.525_{-0.15}^{+0.20}
$$

[theory prediction, with rad. cor., is 0.42]

Error Bar Inflation:

 masses

Due to the $\operatorname{SU}(2)$ cancellation in the sum rule:

$$
(371)^{2}-(341)^{2} \sim(170)^{2}
$$

Precise mass measurements are key, ILC can do it!

LHC Stop Mixing Angle Measurement?

[MP,Weiler, 08I I.I024;

Shelton, 08II.0569]

- Top decays before hadronization
\Rightarrow polarization is observable!
- Top polarization is same as stop handedness if $\chi_{1}^{0}=\tilde{B}, \tilde{W}^{3}$, or opposite if $\chi_{1}^{0}=\tilde{H}_{u}^{0}, \tilde{H}_{d}^{0}$
- Top polarization determined by the "effective mixing angle"

Before cuts:

After cuts:

$\cos \left(2 \theta_{\text {eff }}\right)=1$

Figure 5: Angular distributions of events in the angle θ_{b}. The different contributions correspond to (from top to bottom): signal (yellow), $4 j+W^{-}$(black), $2 j+2 b+W^{-}$(white), $t \bar{t}\left(\mu^{-}\right)$(gray), $t \bar{t}\left(\tau^{-} \rightarrow \mu^{-}\right)$(light red). The event numbers correspond to $10 \mathrm{fb}^{-1}$ integrated luminosity at the LHC.

Figure 7: Leptonic, hadronic, and combined forward-backward asymmetries, as a function of the angle $\theta_{\text {eff }}$. The error bars indicate statistical errors for $10 \mathrm{fb}^{-1}$ integrated luminosity.
[Parton-level analysis; ISR complicates things further - Plehn et al, I006.2833]

Stop Mixing from Gluino Decays?

FIG. 22: Distribution of $m_{b b}$ in the decay chain (III) ${ }_{1}$. The (dashed) line is for $\tilde{t}_{1}=\tilde{t}_{L}\left(\tilde{t}_{R}\right)$, and $400 \mathrm{GeV}<m_{t b}<$ 470 GeV . We use the mass spectrum in the sample point A1 in Table I, and the normalization is arbitrary.

- Direct measurement of θ_{t} - gluino is a pure gaugino!
- Complicated final state, combinatoric issues
- More detailed, quantitative analysis is required to assess the LHC potential for this measurement
[Hisano, Kawagoe, Nojiri, hep-ph/03042 I4]

Sbottom Mixing Measurement at the LHC

Mixing Angle Measurements at the ILC

[Bartl, Eberl, Kraml, Majerotto, Porod, Sopczak, hep-ph/970I 336]

Conclusions

- Proving SUSY-Yukawa Sum Rule experimentally would provide a striking confirmation of SUSY and its role in electroweak symmetry breaking
- Unfortunately, this will be quite challenging at the LHC:
- Error inflation requires precise mass measurements
- Stop mixing angle measurement is hard, sbottom even harder
- ILC excels at this - a quantitative study would be very interesting!

Backup Slides

Stop Mass vs. Naturalness in the MSSM

[MP, Spethmann, hep-ph/0702038]

Note: in the pMSSM ("without prejudice"), other squarks and gluinos can be $>5 \mathrm{TeV}$ without much fine-tuning

