Measuring the top-Yukawa coupling at the 500 GeV ILC

R. Yonamine, K. Ikematsu^A, T. Tanabe^B K. Fujii^C, Y. Kiyo^C, Y. Sumino^D, H. Yokoya^E

Sokendai(KEK), Siegen U.A, Tokyo U.B, KEKC, Tohoku U.D, National Taiwan U.E

 \mathscr{L}_{BSM}

 $\mathcal{L}_{Gauge} + \mathcal{L}_{Higgs} + \mathcal{L}_{Yukawa}$

Gauge Principle

Symmetry Breaking Generation

Relativistic Quantum Field Theory

Relation between mass and coupling constant with Higgs

Two pillars of SM

Standard model consists of two pillars:

- One pillar, gauge symmetry, has been established by precision EW studies.
- Another one, higgs mechanism, is still untested.

A critical mission for the ILC is the Higgs coupling measurement!

Higgs self coupling will be tested at \sim 500 GeV where e+e- -> ZHH cross section attains its maximum.

Our motivation is to confirm the untested pillar by measuring Top-Yukawa coupling at 500 GeV (1st stage of ILC) concurrently to measuring Higgs self coupling.

Relativistic Quantum Field Theory

Relation between mass and coupling constant with Higgs

Two pillars of SM

Standard model consists of two pillars:

- One pillar, gauge symmetry, has been established by precision EW studies.
- Another one, higgs mechanism, is still untested.

A critical mission for the ILC is the Higgs coupling measurement!

Higgs self coupling will be tested at \sim 500 GeV where e+e- -> ZHH cross section attains its maximum.

Our motivation is to confirm the untested pillar by measuring Top-Yukawa coupling at 500 GeV (1st stage of ILC) concurrently to measuring Higgs self coupling.

Relativistic Quantum Field Theory

Relation between mass and coupling constant with Higgs

Two pillars of SM

Standard model consists of two pillars:

- One pillar, gauge symmetry, has been established by precision EW studies.
- Another one, higgs mechanism, is still untested.

A critical mission for the ILC is the Higgs coupling measurement!

Higgs self coupling will be tested at \sim 500 GeV where e+e- -> ZHH cross section attains its maximum.

Our motivation is to confirm the untested pillar by measuring Top-Yukawa coupling at 500 GeV (1st stage of ILC) concurrently to measuring Higgs self coupling.

 $\mathscr{L}_{Gauge} + \mathscr{L}_{Higgs} + \mathscr{L}_{Yukawa}$

Symmet 81 Bressetted!

Symmet 61 Generation

Relativistic Quantum Field Theory

Relation between mass and coupling constant with Higgs

Higgs self coupling will be tested at \sim 500 GeV where e+e- -> ZHH cross section attains its maximum.

Our motivation is to confirm the untested pillar by measuring Top-Yukawa coupling at 500 GeV (1st stage of ILC) concurrently to measuring Higgs self coupling.

Top-Yukawa coupling <

indirect measurement direct measurement

• indirect measurement

The Higgs sector offers a broad range of possibilities for new physics ...

There is a possibility of a new particle X being in the loop.

It is difficult to distinguish X loop and top loop!

• direct measurement promising at ILC!!

main decay mode (H -> bb 68%) can be used

gg -> ttH @ LHC

e+e-->ttH@ILC

Measurement of top-Yukawa coupling at 500 GeV

Past work estimated the measurement accuracy around E_{cm} = 700~800 GeV where the cross section reaches maximum.

500 GeV is nearly threshold of ttH.

Cross section is smaller than 1 fb!

But ...

tt threshold correction enhances ttH production (and also ttZ) (We assume $M_{top} = 175 \text{ GeV}$ in this study)

This makes it possible to perform the direct g_t measurement at 500 GeV

Invariant mass dist. for tt sysytem

Backgrounds

Motivation

Main backgrounds

ttZ followed by $Z \rightarrow bb$ (15%) same final state ($ttZ \rightarrow bWbWbb$)

→ irreducible background tt threshold correction enhances σ_{ttz} from 0.7fb to 1.3fb

 ttg^* followed by $g^* -> bb$ same final state ($t t g^* -> bW bW bb$)

irreducible background

tbW - huge cross section (\sim 600fb)

- hard gluon emission from bottom quarks in tt process mimic signal (Since the tail of tt enters as background of ttH, it is important to include non-resonant contribution(tbW))
- even a tiny fraction of mis-reconstruction or b-tagging failure leads to significant background contamination.

The other possible backgrounds?

 $W*W*/Z*Z \rightarrow ttbb$ small contribution (< 0.01fb)

qq (5 flavors), WW, ZZ, ZH have different signature from ttH signal.

• can be separated with 4×b tagging, event shape cut and mass cut

We generated signal(ttH) and main backgrounds (ttZ, ttg*, tbW).

Basic idea to reduce backgrounds

backgrounds	tbW	ttZ	ttg*	
event shape compared to ttH	Effective! different	same	same	
maximum number of b-jets	2	4	4	
Higgs candidate(Z, g*) mass compared to H	none	Effective! different	Effective! different	

Analysis Framework

Motivation

- Event generator : physsim
 - full helicity amplitude calculation by HELAS
 - MC phase space integration by BASES/SPRING

ISR & beamstrahlung are included

NRQCD correction for ttH and ttZ is included

Dedicated ttg generator with correct color strings

- Parton shower & hadronization: pythia
- Fast detector simulation: JSF

Detector parameters

Detector	Performance	Coverage
Vertex detector	$\sigma_b = 7.0 \oplus (20.0/p)/\sin^{3/2}\theta\mu m$	$ \cos \theta \le 0.90$
Central drift chamber	$\sigma_{P_T}/P_T = 1.1 \times 10^{-4} p_T \oplus 0.1\%$	$ \cos \theta \le 0.95$
EM calorimeter	$\sigma_E/E=15\%/\sqrt{E}\oplus 1\%$	$ \cos \theta \le 0.90$
Hadron calorimeter	$\sigma_E/E=40\%/\sqrt{E}\oplus 2\%$	$ \cos \theta \le 0.90$

ttH L+6-jet mode event display

ttH 8-jet mode event display

- Charged particle tracks
- Signals on H-Cal.
- Signals on E-Cal.

Cut values

There is room for improvement!

6-Jet + lepton	8-Jet	
# of isolated lepton = 1	# of isolated lepton = 0	
$Y_{5->4} = 0.01$	Y _{8->7} = 0.00080	
Y _{5->4} = 0.01 thrust 0.86	thrust > 0.7	
destagging (at least 4 b-jet)	b-tagging (at least 4 b-jet)	
140 GeV < top mass < 205 GeV	136 GeV < top mass < 211 GeV	
90 GeV < higgs mass < 150 GeV	77 GeV < higgs mass < 149 GeV	

Cut flow (6Jet + lepton, lumi. = 1 ab⁻¹, unpolarized beams)

Cut	ttH(6J+L)	ttH (8J, 4J+2L)	tbW(inc. tt)	ttZ	ttg* (g* -> bb)	significance
no cut	elinit	212	583718	1340	697	0.22
Single isolated lepton	106	28.6	203806	441	242	0.23
thrust < 0.86	105	27.5	171238	426	229	0.25
Y _{5->4} > 0.01	55.1	10.3	2368	152	33.0	1.1
4×b-tagging	22.3	1.6	33.1	20.7	11.6	2.4
mass cut	19.2	0.7	10.2	16.4	6.0	2.6

H -> bb (68%) Z->bb (15%)

Motivation

Cut flow (8Jet, lumi. = 1 ab-1, unpolarized beams)

Cut	ttH(8J)	ttH (6J+L, 4J+2L)	tbW(inc. tt)	ttZ	ttg* (g* -> bb)	significance
no cut	172	207	583718	1340	697	0.22
Isolated lepton veto	158	54.3	349054	752	418	0.27
thrust < 0.8	99.2	27.4	62317	454	184	0.39
Y _{8->7} > 0.00082	72.4	8.9	3029	214	48.5	1.25
4×b-tagging	42.6	4.6	144.2	45.0	28.8	2.62
mass cut	34.7	0.5	33.8	31.0	12.4	3.27

H -> bb (68%) Z->bb (15%)

Result summary

lab-1

Beam pol.	6Jet+lepton		8Jet		
(e-,e+)	S/N	significance	S/N	significance	
(0,0)	19.2 / 33.3	2.6	34.7 / 77.7	3.3	
(-0.8,+0.3)	32.4 / 56.8	3.4	58.4/ 128.1	4.3	
Combir	ned results	1 Preliminar		lab ⁻¹	

Combined results

lab-1

Beam pol. (e-,e+)	Combined significance	Combined Δg _t /g _t
(0,0)	4.2	11.9%
(-0.8, +0.3)	5.5	9.1%

(stat. error only)

Summary & Plan

We assumed early stage ILC

- $-E_{cm} = 500 \text{ GeV}$
- luminosity 1 ab⁻¹
- polarized beams (-0.8, +0.3)

Fast simulation studies suggests

~10% accuracy on top-Yukawa coupling is achievable.

We will move on to full simulation studies.

The analysis will be also performed at E_{CM} = 1 TeV as part of the DBD benchmark studies.