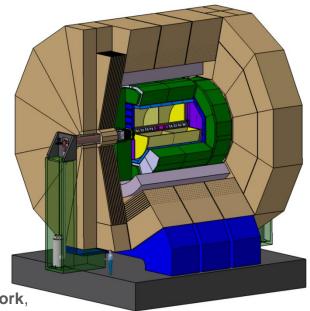
Analysis of the hadronic Higgs Branching Ratios for the $ZH \rightarrow IIqq$ channel at the ILC

ALCPG11, Eugene Nina Herder, University of Bonn 20 March 2011

- Motivation
- Higgs Strahlung Process
- Event Selection
- Fitting Method & Branching Ratios
- Summary & Outlook

Analysis of the hadronic Higgs Branching Ratios for the $ZH \rightarrow IIqq$ channel at the ILC

ALCPG11, Eugene Nina Herder, University of Bonn 20 March 2011


Motivation

- Higgs Strahlung Process
- Event Selection
- Fitting Method & Branching Ratios
- Summary & Outlook

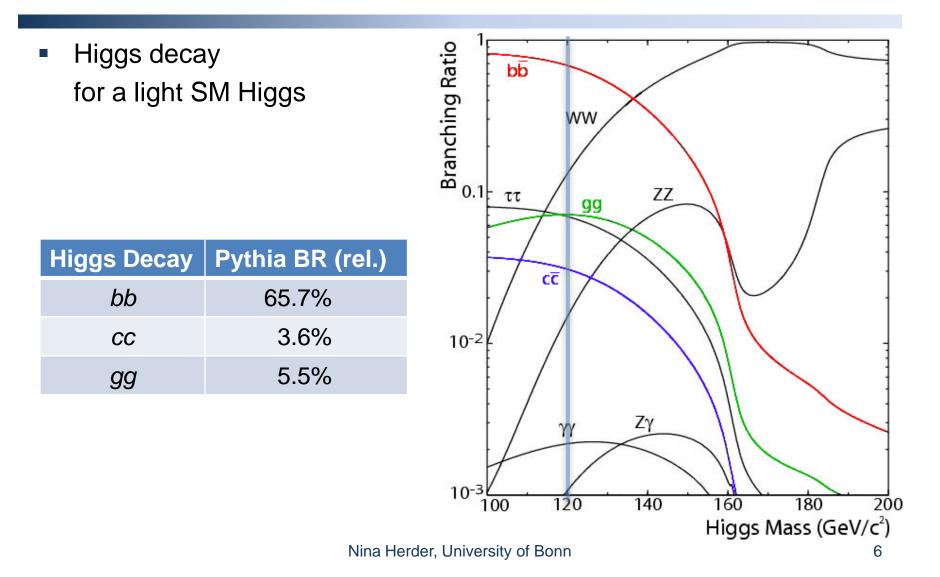
Motivation

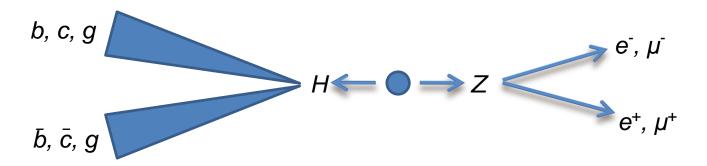
- GEANT4 based full Monte Carlo Data Samples for an ILC large Detector (ILD_00) can be used
- Higgs Branching Ratio Studies have been done for 250 GeV collision energy
- What about 350 GeV where also tt production is allowed (t not included yet)?

Source: ILD concept detector group plan future work, http://www.linearcollider.org/newsline /readmore_20100211_ftr1.html (10 March 2011)

Analysis of the hadronic Higgs Branching Ratios for the $ZH \rightarrow IIqq$ channel at the ILC

ALCPG11, Eugene Nina Herder, University of Bonn 20 March 2011


- Motivation
- Higgs Strahlung Process
- Event Selection
- Fitting Method & Branching Ratios
- Summary & Outlook


- one of the leading Higgs production processes (σ_{ZH}≈ 200 fb) at E_{cms}=350 GeV
- Light SM-Higgs (m_H =120 GeV)
- Polarization (-80%, +30%)

- Z decays only to 3% into $e^+e^-(\mu^+\mu^-)$
- but good lepton identification
- Possibility of an absolute cross section determination via the recoil mass of the leptons
- Signal definition for e⁺e⁻H necessary since sample contains a superposition with the Z-fusion process

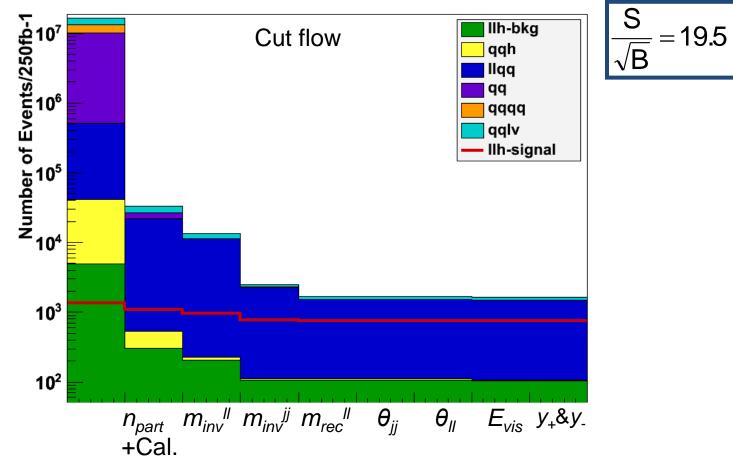
• Signal Process:

- Identification of the 2 leptons $\epsilon(Z \rightarrow \mu^+ \mu^-) = 91.7\%$ $\epsilon(Z \rightarrow e^+ e^-) = 86.4\%$
- Forcing the other particles into 2 jets

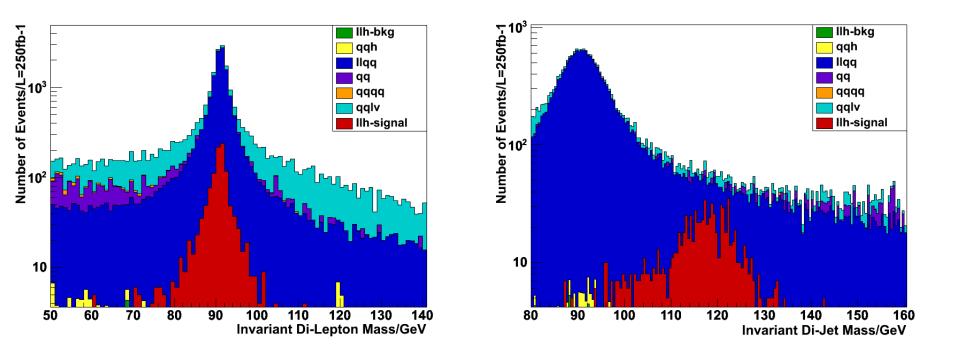
- Lepton Identification
 - Electron Identification
 - p_{track} > 15 GeV
 - E_{em}/E_{tot} > 0.6
 - $E_{tot}/p_{track} > 0.9$
 - Muon Identification
 - p_{track} > 15 GeV
 - $E_{em}/E_{tot} < 0.5$
 - $E_{tot}/p_{track} < 0.3$
- Loop to select the two hardest leptons

Analysis of the hadronic Higgs Branching Ratios for the $ZH \rightarrow IIqq$ channel at the ILC

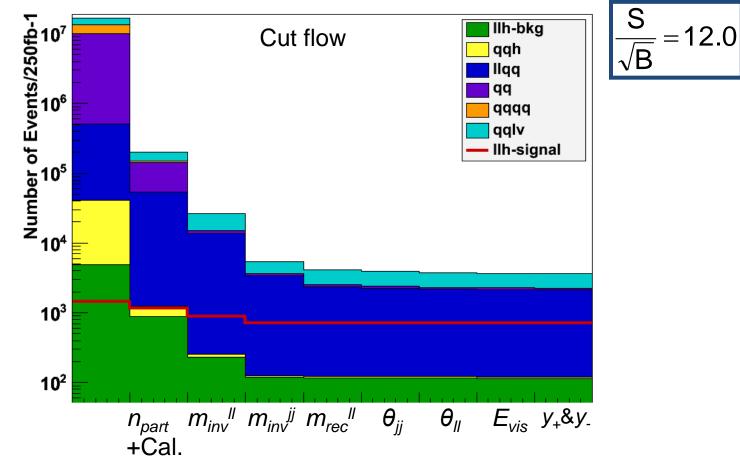
ALCPG11, Eugene Nina Herder, University of Bonn 20 March 2011



- Motivation
- Higgs Strahlung Process
- Event Selection
- Fitting Method & Branching Ratios
- Summary & Outlook

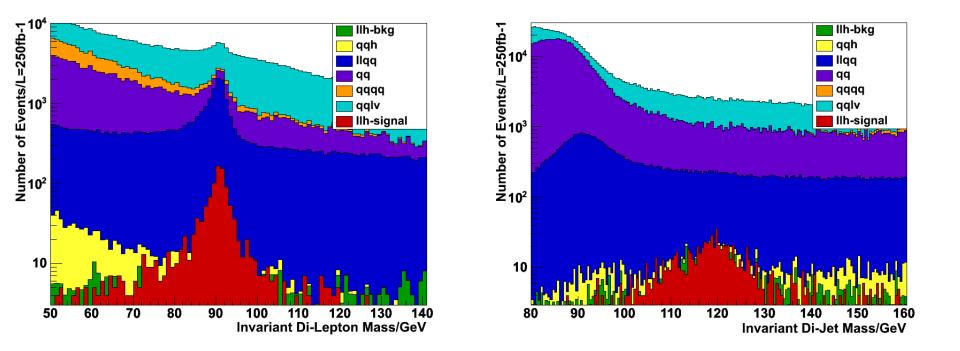

#	Cut	Value
1	Calorimeter Entries + #particles <i>n</i> _{part}	Specific for muons and electrons > 30
2	Di-lepton Mass <i>m</i> _{inv} ^{<i>II</i>}	μ ⁺ μ ⁻ : 80-100 GeV, e ⁺ e ⁻ : 80-105 GeV
3	Di-jet Mass m _{inv} jj	100-150 GeV
4	Di-lepton Recoil Mass m_{rec} "	115-250 GeV
5	Angle between Jets θ_{jj}	< 2.8 rad
6	Angle between Leptons θ_{\parallel}	< 2.6 rad
7	Visible Energy E _{vis}	> 250 GeV
8	Jet-Finder (Durham) y ₊ y ₋	< 0.2 < 0.7

Muon Channel - Signal Efficiency: 56.7%

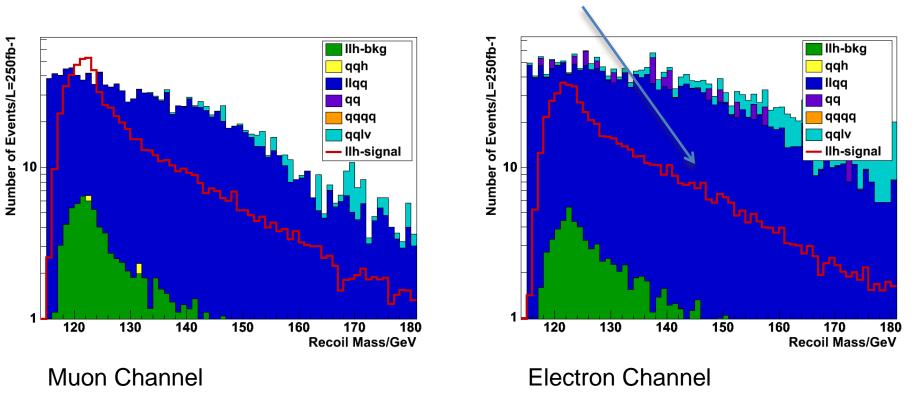


Nina Herder, University of Bonn

 Muon Channel - Signal Efficiency: 56.7% Main selection variables (without cuts):



Electron Channel - Signal Efficiency: 47.7%



Nina Herder, University of Bonn

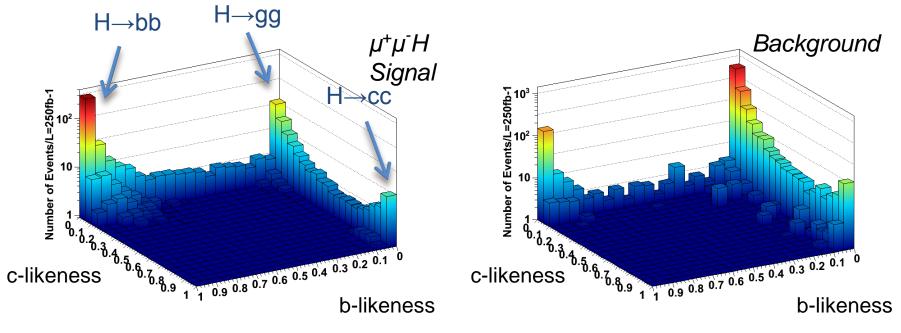
 Electron Channel - Signal Efficiency: 47.7% Main selection variables (without cuts):

Recoil Mass for muons and electrons (after all cuts)

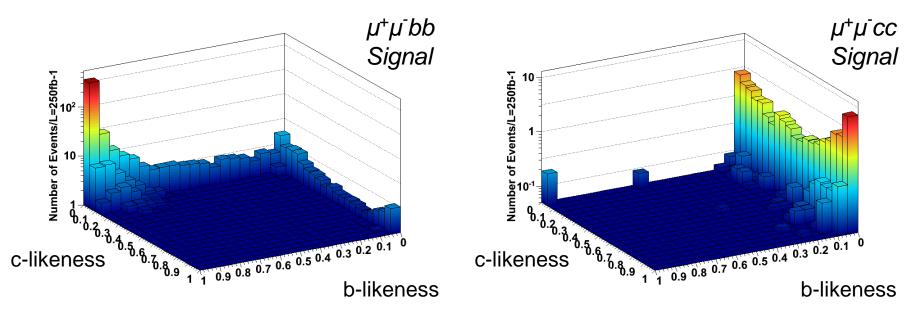
longer tail because of photon radiation

Analysis of the hadronic Higgs Branching Ratios for the $ZH \rightarrow IIqq$ channel at the ILC

ALCPG11, Eugene Nina Herder, University of Bonn 20 March 2011

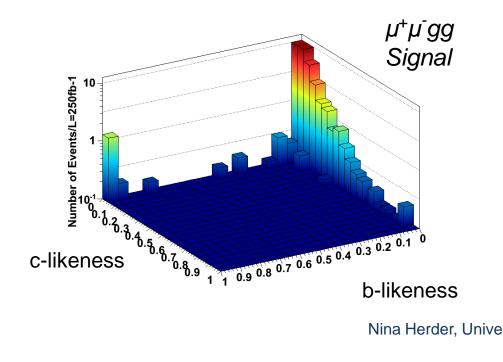

- Motivation
- Higgs Strahlung Process
- Event Selection
- Fitting Method & Branching Ratios
- Summary & Outlook

 Use of 2-D b-likeness/c-likeness templates to perform a Likelihood-Fit


$$x - likeness = \frac{x_1 x_2}{x_1 x_2 + (1 - x_1)(1 - x_2)},$$

$$x = b$$
, c and $x_{1,2}$ b/c – tag value for Jet 1, 2

 Use of 2-D b-likeness/c-likeness templates to perform a Likelihood-Fit


statistic of templates is about more than 50 times higher

Nina Herder, University of Bonn

Use of 2-D b-likeness/c-likeness templates to perform a Likelihood-Fit

> statistic of templates is about more than 50 times higher

- Fitter:TFractionFitter implemented in ROOT
- Evolves the fraction of each template by performing a Likelihood-Fit
- Maximizes:

$$\ln L = \sum_{i,j} N_{i,j}^{data} \ln \left(\sum_{s} r_{s} p_{i,j}^{s} \right)$$

 N^{data} : number of data in bin *i, j*: bins r_s : fraction of template s p_s : binned probability of tempate s s: Higgs decay channel (bb, cc, gg)

Uses Poisson statistics

- Produce an expected signal and scale the templates by a factor of 1000 to suppress the errors of the Monte-Carlo-Statistics
- Background not yet considered in fit

Preliminary fit results for L=250 fb⁻¹

Fraction	Fitted value for muon channel	Fraction	Fitted value for electron channel
r _{bb}	0.86 ± 0.03	r _{bb}	0.87 ± 0.04
r _{cc}	0.06 ± 0.01	r _{cc}	0.05 ± 0.01
r _{gg}	0.09 ± 0.01	r _{gg}	0.08 ± 0.01

Calculation of the Branching Ratios according to

$$BR(H \to s) = \frac{r_s}{r_s^{Pythia}} \times BR(H \to s)_{Pythia}$$

 r_s : decay fraction, s: decay channel (bb, cc, gg)

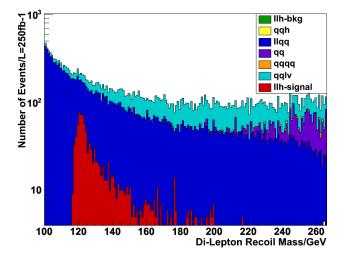
 Preliminary results for the Higgs BRs with electron and muon channel combined

Higgs Decay	BR(H→s)	
bb	(64.6 ± 1.8)%	
CC	$(4.2 \pm 0.5)\%$	
<i>gg</i>	$(6.3 \pm 0.5)\%$	

- Further steps of the fitting method
 - Produce toy data samples to extract the deviations caused by the statistics of the "measured" sample
 - assure that the used template statistics are enough to produce a negligable error for the Branching Ratios
 - Include the background

Analysis of the hadronic Higgs Branching Ratios for the $ZH \rightarrow IIqq$ channel at the ILC

ALCPG11, Eugene Nina Herder, University of Bonn 20 March 2011


- Motivation
- Higgs Strahlung Process
- Event Selection
- Fitting Method & Branching Ratios
- Summary & Outlook

Summary & Outlook

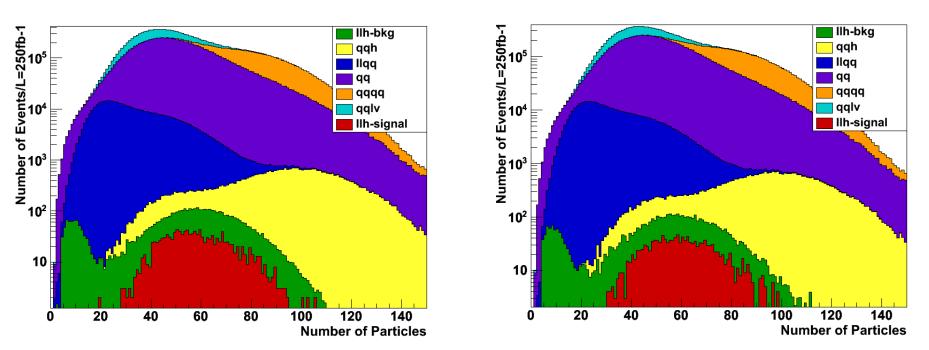
- Cuts seem to lead to a good Signal to Background Ratio
- The preliminary fitting method for the Branching Ratio extraction shows good results and has to be further tested

- Outlook:
 - Working on a kinematic fit including ISR, m_z and m_h to further separate signal from background

 Extraction of the absolute Branching Ratios via the Di-lepton Recoil Mass

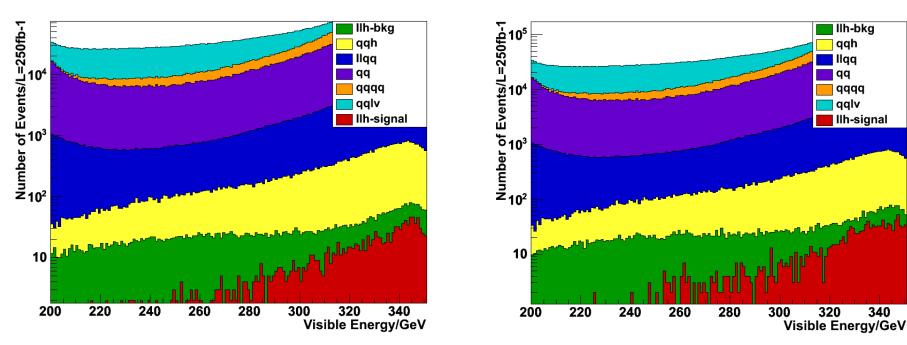
Thank you for your attention.

BACKUP


Cut flow

Cut	Muon Channel		Electron Channel			
	Signal	Background	Signal	Background		
No cuts	1358	16594487	1462	16607288		
Calorimeter Entries + #particles n _{part}	1083	51647	1165	176107		
Di-lepton Mass m _{inv} "	947	30278	914	23546		
Di-jet Mass <i>m_{inv}^{jj}</i>	788	12172	761	4897		
Di-lepton Recoil Mass <i>m_{rec}^{ll}</i>	782	2334	714	3755		
Angle between Jets θ_{jj}	782	1598	710	3660		
Angle between Leptons θ_{II}	782	1590	709	3476		
Visible Energy E _{vis}	772	1556	699	3374		
Jet-Finder (Durham): y ₊ &y	770	1552	697	3347		
Efficiency after all cuts	0.567	0.00009	0.477	0.0002		
Nina Herder, University of Bonn 28						

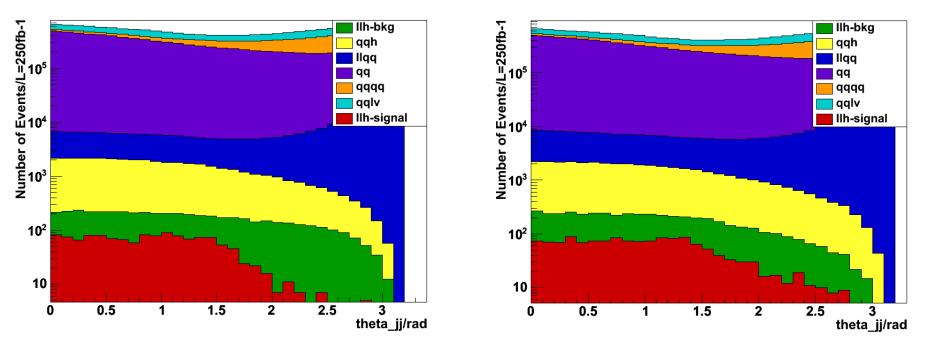
Electron Channel


Number of particles

Muon Channel

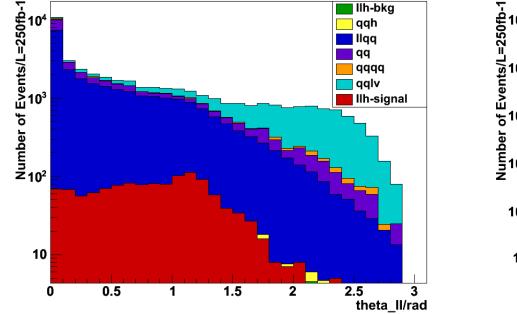
Visible Energy

Muon Channel

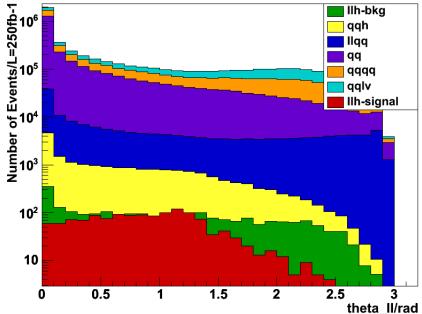


Electron Channel

Electron Channel


Angle between Jets

Muon Channel

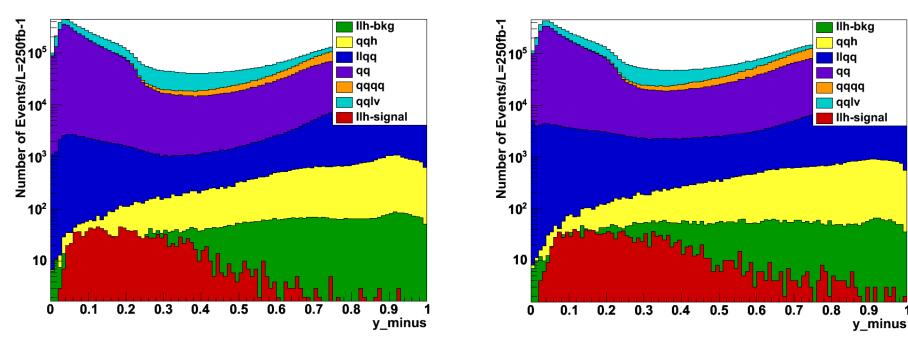


Angle between Leptons

Muon Channel

Electron Channel

Electron Channel


Jet-Finder: y₊

Muon Channel

Jet-Finder: y_

Muon Channel

Electron Channel

1