

ILD and SiD detectors for 1 TeV ILC

some recommendations following experience from the CLIC detector study

http://lcd.web.cern.ch/LCD/

Get overview of physics observables at 1 TeV

(just to get familiar with the new domain)

- e.g. jet energies and particle energies in jets
- Minimal distances between leading particles in jets
- Evolution of angular coverage of the physics wrt 500 GeV case

CLIC example: ttbar events at 3 TeV

Study calorimeter requirements

Assess calorimeter performance for the 1 TeV case Mostly to ensure that calorimeter depth is sufficient and that confusion remains limited (in fact already proven for the CLIC case)

PFA study Full ILD-type detector barrel with tungsten HCAL absorbers

Solid lines: not tails catcher Markers: with tail catcher

Tungsten for HCAL barrel?

Required resolution reached at smaller HCAL outer radius for **tungsten** than for **steel absorber**

Understand the main machine backgrounds:

Overall limited impact expected given the favorable ILC bunch structure

Coherent pairs

Ensure that outgoing beam pipe opening and crossing angle of 14 mrad are safe with respect to coherent pairs

Incoherent pairs

Study of lumical at 1 TeV => may require change in angular range for lumical Study optimal geometry for beamcal

Trade-off between acceptance and backscattering

Optimise beam-pipe layout (can have a function of absorbing back-scattered background)

Verify occupancy in the vertex detector and tracking detectors For direct hits (influence of B-field) and backscattered hits Inner vertex layer may have to be moved to somewhat larger radius

γγ to hadron background

Only few events/bx expected, though with significant energy/bx (few-10 GeV) Study P_t cuts and optimal jet reconstruction algorithm to suppress this background

Coherent pairs and opening angle

CLIC example: Sharp angular cut-off in coherent pairs drives choice of beam pipe opening and choice of crossing angle

Thoughts for ILC: "easier" bunch structure, but: long integration times – only a few readouts per train

- The total occupancies due to all background processes must be evaluated
- Multi-hit readout capabilities of the on-detector electronics (event buffers) have to be evaluated
- The electronics shall record the time of each hit (with ~300 ns precision)

Luminosity spectrum

Influence of luminosity spectrum on physics performance:

E.g. Influence in measuring masses from and-point spectra

Example: CLIC luminosity spectrum and squark end-point spectra

Software for CLIC

- For the CLIC CDR: Simulation and Reconstruction needed for 3 TeV
- Example: ILD Several issues encountered, all fixed
 - ILD tracking code: Hard-coded momentum "sanity check" caused high energy tracks to disappear
 - Excessive reconstruction times
 - ...
- PandoraPFA for CLIC
- Background overlay
 - less of a concern for ILC, but due to long readout times, some background will be accumulated: Needs to be studied!

Simulation and Reconstruction proven in multi-TeV environments!