The Physics Case for a TeV Linear Collider

S. Dawson BNL March, 2011

How to decide?

- How will the LHC help us to decide whether 500 GeV or a (multi) TeV scale lepton collider is optimal?
- What can we expect to learn from the LHC?
 - The time is now
- Electroweak symmetry breaking, the search for supersymmetry, and precision measurements form the backbone of the lepton collider physics case
 - The LHC gives information on all three areas

LHC will point the way

Direct observation of new particles & precision measurements at the LHC

In a year or two, we will know much (much!) more about the TeV energy scale

But we already have learned a lot

Higgs Boson(s)

• SM Higgs expected to be light

This assumes the SM!
 SM prefers light (M_h < 158 GeV) Higgs boson

Tevatron Higgs Exclusion

Tevatron Exclusion: [158 GeV < M_h < 173 GeV]

Higgs Discovery Soon Significance of Observation (σ) — 1 fb⁻¹ @ 7 TeV CMS Preliminary: Oct 2010-9 - 2 fb⁻¹ @ 7 TeV 8 5 fb⁻¹ @ 7 TeV 7 10fb⁻¹ @ 7 TeV 6 5 3 Projected Significance of Observation 0 100 150 200 250 300 350 400 450 500 550 600 M_h (GeV)

CMS: 10 fb⁻¹ gives 3σ discovery for M_h=115-600 GeV

Higgs Exclusion

4 fb⁻¹ will exclude to 500 GeV @ 7 TeV

LHC Higgs Limits with 35 pb⁻¹

Closing in on the Standard Model

Higgs Discovery

√s=7 TeV

ATLAS + CMS ≈ 2 x CMS	95% CL exclusion	3σ sensitivity	5 σ sensitivity
1 fb -1	120 - 530	135 - 475	152 - 175
2 fb ⁻1	114 - 585	120 - 545	140 - 200
5 fb ⁻¹	114 - 600	114 - 600	128 - 482
10 fb ⁻¹	114 - 600	114 - 600	117 - 535

2011

2012

If the SM Higgs exists, we'll know its mass soon

Easy to Evade SM Higgs Limit

• If new physics is at scale Λ >> M_Z, then STU describe precision electroweak measurements

Precision data restrict BSM scenarios

- General 2 Higgs doublet
- Kaluza Klein particles
- Little Higgs with T parity
- NMSSM
- 4 generations

Can accommodate heavy Higgs with some types of new physics

••• Is it *the* Higgs?

• Measure couplings to fermions & gauge bosons

$$\frac{\Gamma(h \to b\overline{b})}{\Gamma(h \to \tau^+ \tau^-)} \approx 3 \frac{m_b^2}{m_\tau^2}$$

• Measure spin/parity

$$J^{PC} = 0^{++}$$

• Measure self interactions

$$V = \frac{M_h^2}{2}h^2 + \frac{M_h^2}{2v}h^3 + \frac{M_h^2}{8v^2}h^4$$

Higgs Production at LC

<mark>σ~log(s</mark>)

Need $e^+e^- \rightarrow hvv$ for heavy Higgs

Light Higgs Couplings well explored at LC

• $e^+e^- \rightarrow Zh$: Optimal energy is $\sqrt{s} \sim M_h + M_Z + 40 \text{ GeV}$

Theory uncertainty (mostly from m_b) larger than experimental accuracy

[Battaglia]

Vector Boson Fusion useful at Higher Energy

• e⁺e⁻ →h $\nu\bar{\nu}$ grows with energy: Allows measurements of

BR(h→μ⁺μ⁻)

• Increased precision on BR($h \rightarrow bb$)

• • • Spin at LHC

• If $h \rightarrow Z^*Z \rightarrow 4$ leptons, then discrimination between spin hypothesis possible (need M_h >140 GeV for rate)*

Minimum number of events to get 5σ discrimination between hypothesis

	0^+	0^{-}	1-	1+
0^+		52	37	50
0^{-}	44		34	54
1-	33	32		112
1+	54	55	109	

*M_h=145 GeV, BR(h \rightarrow Z*Z \rightarrow 4 leptons)~.00036 \Rightarrow ~10⁵ Z's needed

[DeRujula et al, arXiv:1001.5300]

Higgs Potential

- Notoriously difficult
 - Requires 2 Higgs production
 - Many new physics examples enhanced at large energy
- SLHC (3000 fb⁻¹) δλ₃/λ₃ ~ 20-30%
- 500 GeV LC $\delta\lambda_3/\lambda_3 \sim 20\%$ with 1 ab⁻¹
 - Use also 1 ab⁻¹ at 1 TeV $\delta\lambda_3/\lambda_3 \sim 12\%$

Very, very (!) hard both at LHC and LC

Many Good Reasons to Expect More Physics than Higgs

• Higgs mass grows with high scale, Λ (*a priori* $\Lambda = M_{pl}$)

 $M_h \le 200 \text{ GeV}$ suggests $\Lambda \sim \text{TeV}$

Points to 1 TeV as scale of new physics

No Dark Matter Candidate in SM

 WIMP Miracle: Electroweak scale particles have right properties to provide dark matter

Supersymmetry: A favorite

- Solves hierarchy problem, $M_W << M_{GUT}$
- Radiative EWSB
- Light Higgs boson
- Dark Matter candidate
- Need to test SUSY
 - Observe superpartner for each particle
 - Spin measurements
 - SUSY coupling relations

Beautiful Tests of SUSY at LCs

Question: What states are kinematically accessible?
Masses from measuring endpoints (to ~1-2%)

[Battaglia and Blaising, 1006.2547]

3 TeV CLIC, m_{μ} =1108 GeV, m_{χ} =554 GeV, L=2 ab⁻¹

• • • Global fits suggest light SUSY

• Gfitter fit includes:

• LEP limits, $(g-2)_{\mu}$, dark matter, heavy flavor constraints

[tan β , A₀ float in this fit]

Finding Supersymmetry

CMS and ATLAS SUSY limits

mSUGRA fit: M(gluino) ~ M(squark) > 775 GeV

mSUGRA Models

- In CMSSM/mSUGRA all masses related
- Limits on m_0 and $m_{1/2} \Rightarrow$ limits on charginos and sleptons

All sleptons heavier than 250 GeV

 χ_1^+ heavier than 250 GeV

Global fits to SUSY

- Constraints: (g-2)_μ, dark matter relic density, direct searches, EW observables
- Best fits suggest "light" SUSY particles
 - m_{1/2} ~ 340-490 GeV
 m₀ ~100 GeV

Fit from Buchmueller et al, ArXiv: 1102.4585 See also, Akula et al, arXiv:1103.1197

LHC Limits in "Rapid Improvement" Phase

[CMS Note 2010/008]

MSSM Space Highly Constrained

 Question: If parameters are allowed by LHC searches, do they have light sparticles which can be seen at 500 GeV (1 TeV) LC?

• Fine tuning: $M_Z^2 \sim .2m_0^2 + .7M_3^2 - 2\mu^2$

Not just mSUGRA (CMSSM)

- MSSM is broad class of theories
- mSUGRA mass relationships not needed/not always true
- In general, a broad parameter space
- (phenomenological) MSSM has 19 parameters (mostly masses)
 - Require parameter space to satisfy flavor, EW constraints, Tevatron limits, have dark matter candidate
 - Generate acceptable MSSM models

• • • LHC SUSY Limits \Rightarrow LC Conclusions

- Intuitively, the better the LHC SUSY exclusion limits, the less likely there will be SUSY particles kinematically accessible at a 500 GeV linear collider
- Try to quantify this: y-axis: % of generated models which escape LHC observation which have no SUSY particles accessible at 500 GeV LC

Searches for New Z's

o LHC limits already at the TeV scale

CMS limits (35 – 40 pb⁻¹)

Channel	μμ	ee	Combined
Z _{SSM}	1027 GeV	958 GeV	1140 GeV
Ζ _ψ	792 GeV	731 GeV	887 GeV
G _{KK} , k/M _{Pl} = 0.05	778 GeV	729 GeV	855 GeV
G _{KK} , k/M _{Pl} = 0.10	987 GeV	931 GeV	1079 GeV

Precision Measurements

- ILC measures indirect effects of Z': $e^+e^- \rightarrow ff$
- LHC is already squeezing 500 GeV ILC parameter space

Conclusions

- The LHC is honing in on the 1 TeV scale
- We will soon know
 - Is there a light Higgs?
 - Is there SUSY at the TeV scale?
 - Are there Z' resonances at the TeV scale?
 - Something totally unexpected