TeV Upgrade

ilr

ïі

N. Walker (for PMs) ALCPG, Univ. of Oregon, Eugene 21.03.2011

- From 500 to 1000 GeV the Gradient
 Question
- Overall layout and impact on accelerator systems
- Parameters
- Cost & Schedule
- Proposal for White Paper as part of TDR

From 500 to 1000 GeV

ilr

From 500 to 1000 GeV

ilr

iii

Based on use of low-loss or reentrant cavity shapes

Ultra-High Gradient Cavity R&D

- Single-cell re-entrant cavity design achieved ~59 MV/m (cw)
 - Cornell/KEK collaboration
- In principle, multicells with 60 MV/m could be possible

- < 6 km additional linac (total site length ~ 43 km)
- Overall cost-effective solution must be found
 - $Q_0 \Rightarrow$ required cryogenic cooling
 - cost/cavity for increased performance
 - site constraints!

Cavity R&D Prospects

16:00	Cavity surface and material research	COOLEY, Lance
17:00	Erb Memorial Union	16:00 - 16:25
	Cavity shape and configuration	SAITO, Kenji
	Erb Memorial Union	16:25 - 16:50
	Cavity process and the general R&D plan/proposals	GENG, Rongli 📄
	Erb Memorial Union	16:50 - 17:15
	Optimum ML cavity performance: gradient, Q0, and other ML parameters	ADOLPHSEN, Chris 🗎
	Erb Memorial Union	17:15 - 17:30

İİL

Special GDE plenary yesterday to discuss prospects and future directions

SRF R&D Behind Gradient Progresses

Understanding in gradient limits and inventing breakthrough solutions are responsible for gradient progresses. This has been a tradition in SRF community and rapid gradient progress continues. Up to 60 MV/m gradient has been demonstrated in 1-cell 1300 MHz Nb cavity. 45-50 MV/m gradient demonstration in 9-cell cavity is foreseen in next 5 years.

ALCPG2011, 3/19-23,2011

Possible processing baseline in 5 years

			Re-entrant (55 MV/m) Cavity Recipe				
	Fabrication		Nb tubes (Fine Grain)				
	_		Single-piece end-group preparation				
		Istr	lydroform tubes and assemble end groups w/ EBW				
	Process D		4-step Tumbling (Need to remove only ~ 50µm due to texture control)	iatio			
			Ultrasonic degreasing with detergent, or ethanol rinse	Jed			
			High-pressure pure-water rinsing				
		\checkmark	Field flatness tuning	త			
Lance Cooley, Fermilab		ab	Hydrogen degassing at > 800 °C	ion			
– ALCPG11, 20 March 2011		h	Antenna Assembly	ect			
			Plasma Cleaning	gr			
Ca Vertical Test Per →i			Capping by Atomic Layer Deposition				
		st	Performance Test with temperature and mode measurem →inspection, reprocessing, other remediation	nent			

- For the TDR, an approximate cost for the upgrade is needed
- Zeroth-order estimate: current cost of main linacs ~ 3 BILCU
 - roughly ½ RDR total project cost
 - Consider this an upper limit?
- Most difficult question will be cost of "upgraded" main linac technology
 - cost of ultra-high gradient cavities?
 - Re-designed cryomodule?
 - Updated HLRF?
 - CFS solution

jii.

Forward looking R&D required for proof-of-principle

Cost effectiveness needs to be kept in mind

Linac Cost Optimisation

For a fixed energy gain:

iii.

simplistic – there are other terms!

An overall cost-optimum should exist

Above model naïve since cavity/CM cost assumed independent of gradient

High-gradient R&D must also push Q_0 for optimum cost

Cost Scaling

RDR Power Estimate

TABLE 4.3-1

ilc

ABLE 4.3-1 stimated nominal power lo	oads (MW) for 500	GeV centre-	of-mass opei	ration.	L	nb full 9mg
			Conventio	nal Power			
Area System	RF Power	Conv	NC Magnets	Water Systems	Cryo	Emer Power	Total (by area)
Sources e ⁻	1.05	1.19	0.73	1.27	0.46	0.06	4.76
Sources e ⁺	4.11	7.32	8.90	1.27	0.46	0.21	22.27
DR	14.0	1.71	7.92	0.66	1.76	0.23	26.29
RTML	7.14	3.78	4.74	1.34	0.0	0.15	17.14
Main Linac	75.72	13.54	0.78	9.86	33.0	0.4	134.21
BDS	0.0	1.11	2.57	3.51	0.33	0.20	7.72
Dumps	0.0	3.83	0.0	0.0	0.0	0.12	3.95
Totals (by system)	102.0	32.5	25.6	17.9	36.9	1.4	216.3

Doubling linac \Rightarrow 216 MW \rightarrow 352 MW

Efficiency and Power

Simples scaling – needs more detailed analysis

C Other Accelerator System Impacts

- Damping Ring and electron source remain essentially unchanged
 - Notwithstanding a chance in relevant parameters
 - not considered further in this report
- Primary Main Linac concern is choice of technology, but
 - Beam dynamics issues (higher wakefields in new cavity shapes)
 - Existing ML lattice now has to transport higher-energy beam
 - ...
- In the following, briefly consider impact to the following:
 - RTML / Bunch Compressor
 - Beam Delivery System
 - Positron Source

Bunch Compressor (RTML)

- During upgrade we can consider various design scenarios:
 - stay with single-stage
 - Include two-stage compressor
 - (even) consider three-stage compressor
- Evaluate (physics) gain.
- Impact of energy spread etc.

- shorter σ_z
- larger $\Delta p/p$
- increased length, complexity (and cost)

Beam Delivery System

- Upgrade requires additional dipole magnets

- Primary beam dumps rated for 500 GeV 9mA beam
 @ 4 Hz
 - 18 MW average beam power
 - Assumed not easy to 'upgrade'

Positron Source

ΪĹ

Undulator-based positron source probably requires most attention

- Simplistic (first-order) approach: use existing location and drive with 500 GeV beam
 - reduce undulator length to ~10-18 m (or reduced field by ÷4)
 - photon cone (spot size on target) reduced by ÷2
 - photon energy (1st harmonic) ~ 112 MeV
 - Impact on energy spread? Challenge for polarisation (photon collimator)?

• What are the alternatives?

- construct new undulator source at new 250GeV point ??
- construct completely new source (alternative, such as Compton)??
- Physics requirements: Z running (or in general E_{cm} <300 GeV) still required??

Collision rate	f_{rep}	4	Hz
Number of bunches	n_b	2625	
Bunch population	N_	2	$\times 10^{10}$
Bunch seperation	Δt_b	356	ns
Pulse current	I_{beam}	9.0	mA
RMS bunch length	σ_{z}	0.3	mm
RMS energy spread (e-, e+)	$\Delta p/p$	0.105, 0.038	
Polarisation (e^{-}, e^{+})	Ρ.	80, 22	%
Emittance (linac exit)	$\gamma \mathcal{E}_{x,y}$	10, 0.035	μm
IP beta function	$\beta_{x,y}$ *	30, 0.3	mm
IP RMS beam size	$\sigma_{x,y}$ *	554, 3.3	nm
Vertical disruption parameter	D_y	19.2	
Luminosity	L	2.70	$\times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
Fraction of luminosity in top 1%	$L_{0.01}/L$	63.5	%
Average energy loss	$\delta E_{\rm BS}$	4.9	%
Number of pairs per bunch crossing	N_{pairs}	169	
Total pair energy per bunch crossing	E_{pairs}	1084	TeV

ilc

Current "official" parameter set in EDMS*.

Should still be considered <u>tentative</u>, pending <u>review</u> and <u>further study</u>.

Understanding (and updating) these parameters is our job for the next ~6 months.

* EDMS Doc ID: D*925325 http://ilc-edmsdirect.desy.de/ilc-edmsdirect/file.jsp?edmsid=*925325&fileClass=ExcelShtX

Collision rate	f_{ren}	4 Hz
Number of bunches	n_b	2625
Bunch population	Ň.	2×10^{10}
Bunch seperation	Δt_b	356 ns
Pulse current	I_{beam}	9.0 mA

• Working assumptions:

- − 2625 bunches restored ← Site power! Careful consideration.
- 2×10¹⁰ particles per bunch (no change from 500GeV)
- Reduced collision rate $5 \rightarrow 4$ Hz (AC/Cryo power)

Considerations

- $-N \propto 1/n_b$ for fixed current
 - beam-beam \rightarrow stronger focusing; source/injector issues
 - Requirements on bunch compressor
 - (cf alternative parameter proposal from J. Gao, SLAC BAW)
- Reduced repetition rate?
 - 25% luminosity, but at a cost (increase AC/cryo power)

RMS bunch length	σ_{z}	0.3	mm
RMS energy spread (e-, e+)	$\Delta p/p$	0.105, 0.038	
Polarisation (e^{-}, e^{+})	Р.	80, 22	%

• Working assumptions:

- bunch length unchanged
- polarisation unchanged
- energy spread scaled (simplistic)

Considerations

- bunch compressor options, possible shorter σ_z .
- electron energy spread
- positron polarisation

Strongly influenced by design choices for positron source

- energy spread (general)
 - bunch compressor options
 - linac technology for upgrade (wakefield)

Emittance (linac exit)	$\gamma \mathcal{E}_{x,y}$	10, 0.035 µm
IP beta function	$\beta_{x,y}$ *	30, 0.3 mm
IP RMS beam size	$\sigma_{x,y}$ *	554, 3.3 nm
Vertical disruption parameter	D_y	19.2
Luminosity	L	$2.70 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
Fraction of luminosity in top 1%	$L_{0.01}/L$	63.5 %
Average energy loss	$\delta E_{\rm BS}$	4.9 %

Working assumptions:

- Horizontal β -function increased to limit beamstrahlung at ~5%
- (Vertical reduced to increase partially compensate)
- High disruption parameter regime (stability)
- (Normalised) emittances assumed unchanged

Considerations

- $-N \propto 1/n_b$ (see slide 20) beam-beam tradeoffs
 - This includes bunch length
- Vertical emittance beam dynamics studies required
 - influence of linac upgrade tech. choice and bunch compressor options

1 TeV Parameter with <u>Travelling Focus</u>

IP vertical beta function (TF)	β_{y} *	0.2	mm
IP RMS veritcal beam size (TF)	σ_{y}^{*}	2.7	nm
Luminosity	L	3.39	$\times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
Fraction of luminosity in top 1%	$L_{0.01}/L$	62.3%	
Average energy loss	$\delta E_{\rm BS}$	4.85%	
Number of pairs per bunch crossing	N_{pairs}	202.3	
Total pair energy per bunch crossing	E_{pairs}	1327.8	

If Travelling Focus proves tractable, then it can equally be applied for the upgrade

Same caveats apply as for current ≤500 GeV parameter sets

Construction Scenario(s)

The TDR Upgrade Study

- Begins this workshop (next slide)
- Limited resources means only a <u>very</u> conceptual study
 - design parameters
 - scaling of 500GeV designs
 - Working assumptions on ML technology

Note that 500GeV remains our primary focus for the TDR

- SCRF Tech. will define forward looking R&D
 - beyond 2012
 - upgrade scenarios can be 'aggressively optimistic' at this stage.
- An AD&I activity including physics & detector
- Proposal to produce a White Paper by early 2012
 - Will eventually be part of TDR
- Primary editors (tentative needs discussion):
 - 3 PMs
 - 1 Integration
 - 1 Parameters
 - 3 reps from physics and detectors (2 detectors + theory)
 - 1 cost & schedule

Expected to drive the study and write the White Paper

- Each TAG needs to produce a comprehensive list of issues/questions
 - this workshop

İİL

- Formation of the White Paper task force
- Early initial review of top-level parameter(s)
 - working assumptions for remainder of studies
- Identification of key studies and deadlines for reports
 - integrated into monthly AD&I meetings
- Outline of white paper and writing assignments