HOM heating at the IP and in QD0

Update to IRENG'07

Sasha Novokhatskí

2011 Linear Collider Workshop of the Americas (ALCPG11) Eugene, Oregon, March 21, 2011

Outline

- ILC beam parameters
- *ILC interaction region geometry*
- Beam fields
- Wake potentials and loss power
- Trapped and propagating modes
- Frequency spectrum
- Resistive wake fields
- Total power loss

ILC beam parameters

TABLE 2.1-2 Beam and IP Parameters for 500 GeV cms.

Parameter	Symbol/Units	Non	ninal	Low N	Large Y	Low P
Repetition rate	f_{rep} (Hz)		5	5	5	5
Number of particles per bunch	$N~(10^{10})$		2	1	2	2
Number of bunches per pulse	n_b		2625	5120	2625	1320
Bunch interval in the Main Linac	$t_b (\mathrm{ns})$	3	369.2	189.2	369.2	480.0
in units of RF buckets			480	246	480	624
Average beam current in pulse	$I_{ave} (mA)$		9.0	9.0	9.0	6.8
Normalized emittance at IP	$\gamma \epsilon_x^* \; (\mathrm{mm} \cdot \mathrm{mrad})$		10	10	10	10
Normalized emittance at IP	$\gamma \epsilon_y^* \; (\mathrm{mm} \cdot \mathrm{mrad})$		0.04	0.03	0.08	0.036
Beta function at IP	$\beta_x^* \; (\mathrm{mm})$		20	11	11	11
Beta function at IP	$\beta_y^* \ (\mathrm{mm})$		0.4	0.2	0.6	0.2
R.m.s. beam size at IP	$\sigma_x^* \; (\rm{nm})$		639	474	474	474
R.m.s. beam size at IP	σ_y^* (nm)		5.7	3.5	9.9	3.8
R.m.s. bunch length	$\sigma_z ~(\mu {\rm m})$		300	200	500	200
Disruption parameter	D_x		0.17	0.11	0.52	0.21
Disruption parameter	D_y		19.4	14.6	24.9	26.1
Beamstrahlung parameter	Υ_{ave}	0	0.048	0.050	0.038	0.097
Energy loss by beamstrahlung	δ_{BS}	0	0.024	0.017	0.027	0.055
Number of beamstrahlung photons	n_{γ}		1.32	0.91	1.77	1.72
Luminosity enhancement factor	H_D		1.71	1.48	2.18	1.64
Geometric luminosity	$\mathcal{L}_{geo}~10^{34}/\mathrm{cm}^2/\mathrm{s}$		1.20	1.35	0.94	1.21
Luminosity	$\mathcal{L}~10^{34}/\mathrm{cm}^2/\mathrm{s}$		2	2	2	2

INTERNATIONAL LINEAR COLLIDER REFERENCE DESIGN REPORT AUGUST, 2007

- Bunch charge = 3.2 nC
- Bunch length = 0.2-0.3 mm
- Bunch spacing = 369.2 ns
- Beam current in a pulse 9 mA
- Duty ratio=200

ILC IR geometry from Marco Oriunno

ALCPG11 Workshop

3-D stl model from Marco Oriunno

After a second chamber step

Electric field at the beam pipe wall

High electric field at the wall.

Bunch spectrum goes to higher frequency with shorter bunches

$$A(\omega) \sim e^{-\left(\frac{\omega}{c}\sigma\right)}$$
$$f_{\max} = \frac{c}{2\pi\sigma} = 160 - 240 \text{ GHz}$$

 $(m)^2$

Bunch spacing resonances

$$f_n = \frac{n}{\tau_b}$$
 $n = 1, 2, 3, ...$
 $\frac{1}{\tau_b} = \frac{f_{RF}}{480} = 2.7 \text{ MHz}$

ALCPG11 Workshop

Example from PEP-II

Wake potentials and Green's function

Wake potential describes the integrated effect of the wake fields

$$W(\tau) = \int_{-\infty}^{\infty} E_z(t, z)_{z=c(t-\tau)} dt$$

and can be calculated in the time domain by solving Maxwell's equations.

Wake potential of a point charge is a Green's function to calculate fields of any bunch distribution

$$W(\tau) = \int_{-\infty}^{\tau} \rho(\tau') G(\tau - \tau') d\tau' = \int_{0}^{\infty} \rho(\tau - \tau') G(\tau') d\tau'$$

ALCPG11 Workshop

Short range wake potential (0.2 mm bunch)

Calculated with a code "NOVO"

Bunch Loss Factor

• Beam energy loss is calculated by

$$k = \frac{1}{Q} \int_{-\infty}^{\infty} W(\tau) \rho(\tau) d\tau \qquad Q = \int_{-\infty}^{\infty} \rho(\tau) d\tau$$

 Single bunch loss factor is normalized to a bunch charge and usually measured in V/pC.

Loss factor of IR vs bunch length

ILC IR

ALCPG11 Workshop

Loss frequency integral

• We introduce loss frequency integral of a single bunch

$$K_{s}(\omega) = \operatorname{Re}\left\{\frac{1}{\pi}\int_{0}^{\omega}W_{s}(\omega)\rho(-\omega)d\omega\right\} =$$
$$=\frac{1}{\pi}\int_{0}^{\omega}\left|\rho_{s}(\omega)\right|^{2}\operatorname{Re}\left\{Z(\omega)\right\}d\omega$$

• Full integration gives the loss factor:

$$K_s(\omega \to \infty) = k_s$$

Loss frequency integral of IR

ALCPG11 Workshop

Comparison with loss frequency integral of the ILC (TESLA) cryo-module

TESLA Accelerating Cryomodule

Power loss of a train of bunches

- IR is a large "cavity".
- Some of the fields excited in the IR can be trapped and absorbed there. Other part can leave IR, travel along the beam pipes and absorbed.
- Trapped modes may have high Q-value and keep the fields from the previous bunches.
- Modes with higher frequencies can leave the region.

Longitudinal impedance

• A Fourier transform of a Green's function gives a longitudinal coupling impedance

$$Z(\omega) = \int_{-\infty}^{\infty} G(\tau) \exp(-i\omega\tau) d\tau$$

• We can use wake potential to calculate longitudinal impedance

$$W(\omega) = \int_{-\infty}^{\infty} W(\tau) \exp(-i\omega\tau) d\tau =$$
$$= \rho(\omega) \times \int_{0}^{\infty} G(\tau') \exp(i\omega\tau') d\tau' = \rho(\omega) \times Z(-\omega)$$

Long-range wake potential

ALCPG11 Workshop

Cut-off frequency

- Cut-off frequency is the maximum frequency of captured modes in a cavity.
- It is determined by the size of a beam pipe.
- For E01 mode

$$f_{[GHz]}^{cut-off} = \frac{c}{a} \times \frac{v_{01}}{2\pi} = \frac{0.11474}{a_{[m]}}$$

ILC IR: a=10mm=0.01m *f*=11.47 GHz

Trapped modes of IR

Wake fields in the corner

¹/₂ * ¹/₂ * ¹/₂ model for MAFIA simulations

MAFIA simulations

******	******	******	****	*****	****	******	***	******	****	*******	******
Ψ.											*
4.											*
¥	м	м	АААА	ААА	FFF	FFFF	III	IIII	ААА	АААА	*
¥	MM	MM	A	А	F			I	А	А	*
*	MM	мм	A	А	F			I	А	А	*
¥	ммм	1 M	A	А	F			I	А	А	*
¥	M M	M	АААА	ААА	FFF	FFF		I	AAA	АААА	¥
¥	M	M	A	А	F			I	А	A	¥
¥	м	M	A	A	F			I	A	А	*
¥	м	M	A	A	F		III	IIII	А	А	*
¥											*
¥											¥
******	*******	******	*****	*****	****	*******	****	******	*****	******	********
	f all mode	e four	-								colver
summary u	i all'moue	s roun	u				 ירר				Solver
modo	froquorou	(/h=		-divé	(d)_	maxwe -div(b	211	S Taws	,	1(0)-	ACCURACY
moue	riequency	9112		nov po	uj=	=uiv(c))= m	may po	ncur nem	12 porm	/ / / / / /
1	8 754444	201		2 9E-	-08		۱۵	6 75-	.04	3 45-05	1 65-04
5	9 8715755	+00 +08		1 75-	-07	0.000+0	ñ	8 GE-	.04	3 75-05	2 15-04
ž	1 0443016	+00 +00		5 4 5-	-08	0.000+0	ñ	5 96-	.04	4 65-05	2.16-04
ă	1.1252416	+09		1.16-	-07	0.0E+0	ίõ.	7.5E-	-04	7.3E-05	2.9E-04
Ś	1.179520E	+09		7.0F-	-08	0.0E+0	00	7.5E-	-04	1.1E-04	4.0E-04
6	1.231551E	+09		8.7E-	-08	0.0E+0	00	6.2E-	-04	5.3E-05	2.3E-04
7	1.302785E	+09		6.8E-	-08	0.0E+0	00	4.3E-	-04	3.6E-05	1.7E-04
8	1.326441E	+09		8.5E-	-08	0.0E+0	50	5.8E-	-04	9.8E-05	3.9E-04
9	1.415353E	+09		8.0E-	-08	0.0E+0	00	5.6E-	-04	6.4E-05	2.8E-04
10	1.419791E	+09		7.3E-	-08	0.0E+0	00	4.8E-	-04	5.5E-05	2.5E-04
11	1.500033E	+09		7.6E-	-08	0.0E+0	00	4.3E-	-04	5.9E-05	2.7E-04
12	1.532397E	+09		6.9E-	-08	0.0E+0	00	4.3E-	-04	3.4E-05	1.7E-04
13	1.581816E	+09		7.6E-	-08	0.0E+0	00	3.8E-	-04	5.3E-05	2.6E-04
14	1.641874E	+09		6.2E-	-08	0.0E+0	00	3.8E-	-04	5.3E-05	2.7E-04
15	1.661642E	+09		8.4E-	-08	0.0E+0	00	4.0E-	-04	2.4E-05	1.2E-04
16	1.738912E	+09		7.3E-	-08	0.0E+0	00	3.2E-	-04	3.5E-05	1.8E-04
17	1.749572E	+09		7.7E-	-08	0.0E+0	00	3.3E-	-04	1.9E-05	1.1E-04
18	1.812262E	+09		7.9E-	-08	0.0E+0	00	3.5E-	-04	3.1E-05	1.5E-04
19	1.854955E	+09		6.1E-	-08	0.0E+0	00	3.4E-	-04	3.0E-05	1.8E-04
20	1.868092E	+09		1.3E-	-07	0.0E+0	00	3.2E-	-04	3.2E-05	1.9E-04
21	1.910781E	+09		1.1E-	-07	0.0E+0	20	4.3E-	-04	7.2E-05	3.5E-04
22	1.956/55E	+09		6.5E-	-08	0.0E+0	00	4.8E-	-04	6.6E-05	3.3E-04
23	1.970687E	+09		9.1E-	-08	0.0E+0	00	4.5E-	-04	7.4E-05	3.2E-04
24	2.029463E	+09		0.1E-	-08	0.0E+0	<u>,0</u>	4.5E-	-04	7.9E-05	4.1E-04
20	2.004812E	+09		0.2E-	-08	0.0E+U	.0).IE-	-04	4.8E-U5	2.8E-04
20	2.09/944E	+09		0.4E-	-08	0.0E+0	0	7.7E-	-04	1.1E-04	4.5E-04
27	2.143/32E	+09		1.3E-	-07	0.0E+0	0	2.4E-	-04	3.3E-U)	1.75.04
20	2.10/004E			1 OF	07	0.0E+0	0	3.0E-	04	2.0E-00	1.7E-04 2.1E 04
20	2.19/2446			5 AF	-07	0.0E+0	0	2.985	-04	5.5E-05	3.1E-04 2.5E-04
30	2.20J334E	.TV9		J.4E-	-00	0.02+0	10	5.0E-	-04	J. 0E-05	2.JE-04

Second mode

Other mode

Interaction with one mode

Mode voltage decay
$$V(t) = V(o) e^{-\frac{t}{\tau_{l,n}}}$$

Loaded time decay or filling time

$$\tau_{l,n} = \frac{2Q_l}{\omega_n} = \frac{2Q_l}{2\pi f_n} = \frac{Q_l}{\pi f_n}$$

 Q_l

 au_b

Loaded Q-value which includes coupling

Bunch spacing

$$\frac{\tau_b}{\tau_{l,n}} << 1$$

and loaded Q

$$Q_l >> \frac{\omega_n \tau_b}{2} = \pi f_n \tau_b$$

ALCPG11 Workshop

Coherent and incoherent excitation

If the bunch spacing is equal to mode decay time the coherent power is only two times larger than incoherent power

Total loss power (all trapped modes)

Total power

$$P_{incoh.} = I^2 \tau_b \sum_n k_n \qquad P_{coh.} = 2I^2 \sum_n k_n \tau_{l,n}$$

Trapped mode frequency range 0.85 – 11.5 GHz

Bunch spacing

369.2 ns

Loaded Q $Q_l = \pi f_n \tau_b$ 990 - 13300

$$\sum_{n} k_n = 7.3 \text{ V/pC}$$

 $P_{incoh.} = 440 \text{ W}$ $P_{coh.} = 880 \text{ W}$

Average power is 200 times smaller

ALCPG11 Workshop

Loss integral and cut-off frequency

ALCPG11 Workshop

Power loss in a pulse (two beams)

ALCPG11 Workshop

Resistive-wall wake fields

(Losses of image currents)

conductivity	/Ohm/mm				
Al	35000				
Cu	58000				
SS	1400				
Au	48800				
Be	25000				
Ni	14600				
NEG	55-1000				

Fields in Be chamber. Bunch 0.2 mm

—Er —Ez

ALCPG11 Workshop

Power loss due to resistive wall. Not so much.

Resistive wall	wakes	Be 40 mu	a [mm]	L/2 [m]		Total resistive	Power [W]
			12	0.0625			
bunch [mm]	f bunch	1/mm	V/pC/m		Power [W]		
0.2	238.7324146	5	0.7710933		5.764924839		224.4359994
0.3	159.1549431	3.333333333	0.4153219		3.105071121		114.3046605
0.5	95.49296586	2	0.1917086		1.433271006		45.96733098
Resistive wall	wakes	Be 70 mu	a [mm]	L/2 [m]			
			16	0.14279			
bunch [mm]	f bunch	1/mm	V/pC/m		Power [W]		
0.2	238.7324146	5	0.5829		9.956313235		
0.3	159.1549431	3.333333333	0.3127758		5.342415229		
0.5	95.49296586	2	0.1440609		2.460654392		
Resistive wall	wakes	SS 150 mu	a [mm]	L/2 [m]			
			82.81	1.345644			
bunch [mm]	f bunch	1/mm	V/pC/m		Power [W]		
0.2	238.7324146	5	0.6931		111.5662359		
0.3	159.1549431	3.333333333	0.3488		56.14529371		
0.5	95.49296586	2	0.1386		22.31002783		
Resistive wall	wakes	SS 150 mu	a [mm]	L/2 [m]			
			63.3485	0.145			
bunch [mm]	f bunch	1/mm	V/pC/m		Power [W]		
0.2	238.7324146	5	0.8888		15.41625022		
0.3	159.1549431	3.333333333	0.4305		7.467029388		
0.5	95.49296586	2	0.174		3.018032784		
Resistive wall	wakes	SS 150 mu	a [mm]	L/2 [m]			
			93.8	1.119			
bunch [mm]	f bunch	1/mm	V/pC/m		Power [W]		
0.2	238.7324146	5	0.6106		81.73227528		i
0.3	159.1549431	3.333333333	0.3156		42.24485109		
0.5	95.49296586	2	0.1251		16.74534497		

X 5 (NEG) =600 W

- The amount of beam energy loss in IR is almost equal to the energy loss in one accelerating cryo-module.
- Additional energy spread accumulated in the IR is very small.
- Spectrum of the wake fields is limited to 300 GHz
- Average power of the wake fields excited in IR is around 30 W for nominal parameters.
- Pulse power in this case is 6 kilowatts.

