Benchmark Processes for the DBD

Tim Barklow (SLAC) Mar 23, 2011

Outline

- DBD Benchmarks with Baseline Detector
- DBD Benchmark Event Generation
- CLIC Benchmarking Participation by SiD
- Benchmarking for Detector Optimization

 $e^+e^- \rightarrow \nu \bar{\nu} H$, $H \rightarrow \mu^+\mu^-$, $b\bar{b}$, $c\bar{c}$, gg, WW^* , $\sqrt{s}=1$ TeV

We have experience with gg and WW^* modes Could use help with flavor tagging for $c\overline{c} \& b\overline{b}$ Would be nice to find independent person for $\mu^+\mu^-$

GEFÖRDERT VOM Bundesministerium für Bildung und Forschung

$$e^+e^- \rightarrow W^+W^-$$
, $\sqrt{s}=1$ TeV

Four Jet Topology

Two Jets Plus Lepton Topology

Beam Polarization Measurement

Triple Gauge Couplings

Combined measurement of Triple Gauge Boson couplings and polarization at the ILC

Philip Bechtle, Wolfgang Ehrenfeld, Ivan Marchesini – DESY - Hamburg

Ivan Marchesini, IWLC2010, 2010-10-20

W'W' invariant mass from the hadronic decay

$$e^+e^- \rightarrow t\bar{t}H$$
, $\sqrt{s}=1$ TeV

Eight Jet Topology

Six Jets Plus Lepton Topology

Top Yukawa Coupling Measurement

$$e^+e^- \rightarrow \tau^+\tau^-, \ \sqrt{s} = 500 \text{ GeV}$$

Cross Section and A_{FB} Precision

Tau Decay Mode Efficiencies and Purities

Tau Polarization

					1,000			
					500			
					0 -1.	0 -0.5	0.0 •••••••••••••••••••••••••••••••••••	0.5
decay mode	Correct ID	Wrong ID	ID eff	ID purity	SM bgnd]		
$e^- \bar{\nu_e} \nu_{\tau}$	39602	920	0.991	0.977	1703			
$\mu^- \bar{\nu_\mu} \nu_\tau$	39561	439	0.993	0.989	1436		•	
$\pi^- \nu_{\tau}$	28876	2612	0.933	0.917	516	←	SiD I	LOI
$\rho^- \nu_\tau \to \pi^- \pi^0 \nu_\tau$	55931	8094	0.790	0.874	1054			
$a_1^- \nu_\tau \to \pi^- \pi^0 \pi^0 \nu_\tau$	18259	11140	0.732	0.621	847			
$a_1^- \nu_\tau \to \pi^- \pi^+ \pi^- \nu_\tau$	21579	2275	0.914	0.905	141			

80eR tau -> rho nu

Recon

wrongID

MC

0.5

1.0

2,500

2,000

1,500-

Event Generation Changes Since the LOI

- Distribute Event Generation between KEK, DESY and SLAC
- Include initial state particles and final state polarization and color flow in event record
- Improved data base for event generation information
- Include amplitudes with CKM-suppressed vertices in event generation
- Use particle aliasing to reduce the number of distinct WHIZARD processes (let the WHIZARD program do the flavor sums)

Aliasing

alias q u:d:s:c:b:U:D:S:C:B alias r u:d:s:c:U:D:S:C alias e e1:E1 alias l e2:e3:E2:E3 alias v n1:n2:n3:N1:N2:N3 alias x u:c:U:C alias y d:s:D:S alias k b:B

Aliased particles must have the same charge, color rep, and mass

processes dominated by $e^+e^- \rightarrow t\overline{t} \rightarrow b\overline{b}qqqq$:

bbxxyy_o	e1,E1	k,k,x,x,y,y	omega	w:c,c
bbxxby_o	e1,E1	k,k,x,x,k,y	omega	w:c,c
bbxxbb_o	e1,E1	k,k,x,x,k,k	omega	w:c,c

4–Fermion Production

- With aliasing, number of processes changed from 45 without CKM-suppressed final states to about 18 including CKM-suppressed final states
- Mikael Beggren has created a script that can generate all 4-fermion events with a specified lumi, fill a status file, copy stdhep files to grid and output other info (.log, .in, .out, .prc.,... files) to a web directory.
- Mikael recently tested the script by generating all 4-fermion processes excluding those with final state electrons and produced 1 ab-1 equiv on DESY batch system overnight.

6–Fermion Production

- Aliasing has allowed us to consolidate the processes
- Compilation and MC integration take much longer than before because of the CKMsuppressed vertices. However, compilation and integration only has to be done once, so this ultimately should not hold us up.

! WHIZARD version 1.95 (Feb 25 2010)
! Process qqqqvv_o:
! WHIZARD run for process qqqqvv_o:

! Input checksum = 3B68C2EF06B73739B27D58725EAA						
! It	Calls Iı	ntegral[fb]	Error	[fb] Err[%] Acc	Eff[%]
1 !	100000	1.887659	9E+02	4.82E+01	25.52	80.70*
2	100000	2.795896	1E+02	8.46E+01	30.27	95.73
3	100000	1.965882	3E+02	2.40E+01	12.23	38.66*
4	100000	2.818594	8E+02	5.33E+01	18.90	59.75
5	100000	2.486071	3E+02	2.14E+01	8.63	27.28*
6	100000	3.491012	9E+02	6.17E+01	17.66	55.86
7	100000	3.098026	6E+02	7.07E+01	22.81	72.13
8	100000	2.865468	2E+02	1.66E+01	5.80	18.35*
9	100000	3.024793	0E+02	3.10E+01	10.24	32.38
10	100000	2.470661	2E+02	1.31E+01	5.30	16.77*
. 11	100000	2.583028	32E+02	1.44E+01	5.58	17.63
12	300000	4 882139	3E+02	2.00E+02	40.05	224 30
14	300000	4.002130	555102	2.0000002	40.90	224.50

<pre>! WHIZARD version 1.95 (Feb 25 2010) ! Process yyyyvv_o: ! e a-e -> d d a-d a-d nu_e a-nu_e ! e a-e -> s s a-d a-d nu_e a-nu_e ! e a-e -> b b a-d a-d nu_e a-nu_e ! . ! . ! 128 64 -> 1 2 4 8 16 32</pre>					
WH	IZARD run for process yyyyvv_o:				
! Inp	! Input checksum = 2614242A99DAD29364C961343F1B				
! It	Calls Integral[fb] Error[fb] Err[%] Acc	Eff[%]		
1	100000 2.0310620E+02 1.33E+02	65.57	207.37*		
2	100000 1.0657116E+02 3.55E+01	33.29	105.26*		
3	100000 1.2243194E+02 7.28E+01	59.50	188.14		
4	100000 8.0454756E+01 2.10E+01	26.09	82.49*		
5	100000 7.2777974E+01 6.07E+00	8.34	26.37*		
6	100000 6.6693845E+01 8.77E+00	13.15	41.59		
7	100000 5.7516211E+01 3.10E+00	5.39	17.06*		
8	100000 6.3220731E+01 3.29E+00	5.20	16.43*		
9	100000 6.0997089E+01 2.46E+00	4.04	12.78*		
10	100000 7.5510690E+01 6.70E+00	8.87	28.06		
11	100000 6.4766940E+01 3.63E+00	5.60	17.71		
!					
12	300000 8.1706588E+01 9.21E+00	11.27	61.71		

SiD Participation in CLIC Benchmarking:Chargino Mass and
Cross SectionSignal: $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow W^+ W^- \tilde{\chi}_1^0 \tilde{\chi}_1^0$ $\sigma=10.5 \text{ fb}$

Backgrounds:
$$e^+e^- \rightarrow \tilde{e}_L^- \tilde{e}_L^+ \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- v_e \overline{v}_e \rightarrow W^+ W^- \tilde{\chi}_1^0 \tilde{\chi}_1^0 v_e \overline{v}_e$$

+ $\tilde{\mu}_L^- \tilde{\mu}_L^+ \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- v_\mu \overline{v}_\mu \rightarrow W^+ W^- \tilde{\chi}_1^0 \tilde{\chi}_1^0 v_\mu \overline{v}_\mu \quad \sigma=1.4 \text{ fb}$
 $e^+e^- \rightarrow W^+ W^- v \overline{v} + ZZ v \overline{v} \rightarrow q \overline{q} q \overline{q} v \overline{v} \qquad \sigma=55.7 \text{ fb}$

5 Fit Var:
$$M(\tilde{\chi}_1^+), M(\tilde{\chi}_1^0), M(\tilde{e}_L^-),$$
 (assume $M(\tilde{e}_L^-) = M(\tilde{\mu}_L^-)$)
 $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^- \to W^+ W^- \tilde{\chi}_1^0 \tilde{\chi}_1^0), \sigma(\tilde{e}_L^- \tilde{e}_L^+ + \tilde{\mu}_L^- \tilde{\mu}_L^+ \to W^+ W^- \tilde{\chi}_1^0 \tilde{\chi}_1^0 v \overline{v})$

Measured Var: Distribution of final state W energies.

FastMC Simulation $L=1 ab^{-1}$

Simultaneous Fit $\sigma(e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^+)$ and either $M(\tilde{\chi}_1^+)$ or $M(\tilde{\chi}_1^0)$

Benchmarking for Detector Optimization

If the difference between 4.5λ and 7.5λ is this small for jet energies ≤ 250 GeV, why bother doing a calorimeter depth optimization study at $\sqrt{s}=1$ TeV with $e^+e^- \rightarrow vvH$, where the jet energies are between 80 and 250 GeV? Perhaps it is better to use the $\sqrt{s} = 1 \text{ TeV } e^+e^- \rightarrow W^+W^-$ benchmark for the calorimeter depth optimization study. This process has a four jet topology with individual jet energies up to 500 GeV. Furthermore each W can be thought of as a 500 GeV jet with 80 GeV mass.

We believe that much of the energy lost due to leakage can be recovered through beam energy constraint fits of the jet four momenta. This study would allow us to prove that this is the case, and that any leakage in a 4.5 λ calorimeter at $\sqrt{s} = 1$ TeV would have a negligible effect on the physics capabilities of the detector.

Mikael Berggren has nearly completed the generation of a 1 ab⁻¹ sample of 4 fermion processes at $\sqrt{s} = 1$ TeV. We could begin simulation and reconstruction very soon.