Optimal $\gamma \rightarrow e^+$ Conversion Target for Compton Sources

Eugene Bulyak Thanks to: V. Lapko, N. Shulga, S. Riemann, A. Schaelicke, and the entire PosiPol collaboration

NSC KIPT, Ukraine

ALCPG11, Eugene, 21/03/2011

Outline

Optimal Flat Conversion Target

- General Considerations
- Target for Polarized Positrons
- 2 Rod Conversion Target
 - Idea and Estimations
 - Sliced Rod Scaling
 - Example of Rod

3 Summary

- Summary
- Backup slides
- Acknowledgement

General Considerations Target for Polarized Positrons

Fates of Gammas and Positrons

L target thickness, κ positron production, λ positron losses

- Balance of gammas
 - exp(-κL) gammas pass through target
 - 1 exp(-κL) gammas convert into positron–electron pairs
 - Balance of positrons
 - Total production $1 \exp(-\kappa L)$
 - $(1 + \lambda/\kappa) [1 \exp(-\kappa L)] \lambda L$ escape from target
 - Fraction with $E_{ac} \le E \le E_{max}$ accepted

For each spectrum of gammas, the target material (κ, λ) , and the shold accepted positrons energy $E_{\rm ac}$ there exists the optimal target thickness with maximal yield of positrons

General Considerations Target for Polarized Positrons

Transformation of Laser Photons into Positrons

Eugene BULYAK Optimal $\gamma \rightarrow e^+$ Conversion Target

General Considerations Target for Polarized Positrons

Optimal Target Thickness

Higher the polarization thinner the target, smaller the yield

Compton spectra, $E_{\gamma}^{\max} = 20 \text{ MeV}$

General Considerations Target for Polarized Positrons

Validation of the Model (A. Schalicke, S. Riemann)

Dependence on the target thickness, Ti and W Compton gamma on Ti target v10⁻⁹ N, . N 0.8 0.75 0.7 14 13 12 11 0.65 0.6 0.55 0.5 10<u>-</u> .45 0.1 0.15 0.35 0.4 0.45 0.2 d / X. Ti 17 -********** 16 15 yield x 10⁻³ 14 13 12 11 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 d/X0

Eugene BULYAK Optimal $\gamma \rightarrow e^+$ Conversion Target

General Considerations Target for Polarized Positrons

Maximal yield and polarization

Envelopes for Ti and W targets (optimal thickness)

Dash curve: a rod target

- Polarization degree up to 0.7–0.8 attainable at yield ≥ 0.001 per scattered laser photon
- Higher the polarization:
 - Iower the yield
 - higher the quality of positron beam (smaller energy spread, emittance)
 - thinner the conversion target, lower the power load
- High–Z material more effective (T. Omori, 2007)

Idea and Estimations Sliced Rod Scaling Example of Rod

Rod Conversion Target

Idea: V.Lapko, N.Shulga (2007): positrons path shorter than gammas

b, d – spacing and disk thickness (in units of disk radius)

- Path length of positrons much shorter than of gammas
- Increased yield of positrons due to reduced losses
- Decreased target heat load
- Longer target (in rad. length) may be employed

Idea and Estimations Sliced Rod Scaling Example of Rod

Density and Emittance Disk spacing b = 1, initial angular spread $r'_0 = 0.1$)

Cylindrical coordinate frame

Density profile after source and consecutive scattering disks

Halo distribution over the radial phase plane after first disk

Idea and Estimations Sliced Rod Scaling Example of Rod

Stretching of Rod $E_{\text{positron}} = 15 \text{ MeV}, r = 1 \text{ r.l.}, d = 0.01 \text{ r.l.}$

Path length of escaped e⁺ vs. spacing Ratio of escaped e⁺ vs. spacing Scaling (not accounted for energy decrease): $b\sqrt{\langle r'^2 \rangle} \sim b\sqrt{d}/\gamma$ (*d* in r.l. units) – increase in energy of positrons is compensated with increase of disk spacing.

Idea and Estimations Sliced Rod Scaling Example of Rod

A Rod Conversion Target – Example $E_{\gamma}^{(\text{max})} = 20 \text{ MeV}$, $E_{\text{pos}} = (10...20) \text{ MeV}$

Rod parameters

- material: tungsten
- total thickness: 3 r.l. (flat target opt. 0.52 r.l.)
- radius: 1 r.l. (3.3 mm)
- disk thickness: 0.01 r.l. (33 μm)
- spacing: b = 0.3, 1 (length 1 m, 3 m)

Positrons

- produced per scattered gamma: 0.26
- produced per income gamma: 0.52
- escaped per scattered: 0.07,0.13 for b = 0.3, 1 resp (comp. 0.01 for flat target)
- instant emittance (source):
 - pprox 10 μ m rad (b = 1)
- polarization: 0.6

Summary Backup slides Acknowledgement

Optimal Flat Target Compton sources

- Optimal target thickness scaled as *E*_{max} of gammas
- Polarization degree of positrons determined by postselection
- Higher the polarization:
 - thinner the optimal target
 - smaller the positron intensity
 - higher the positron beam quality smaller emittance and energy spread

Polarization degree up to 0.7–0.8 attainable at yield \geq 0.001 per scattered laser photon in Compton sources

Rod Target

- The rod converter is more effective than the optimal target
- It has no optimal integral thickness and length: the longer the more effective
- Dimensions of the sliced rod depend of the experimental setup
- Collection of positrons is of prime importance

The rod convertor might be applied in the sources other than Comptons: conventional, hybrid,

Summary Backup slides Acknowledgement

Collection of Positrons

Option – current along rod (imitation of "lithium lens")

Max off–axis deviation and half-step vs. current ($I_A = 17 \text{ kA}$)

- Trajectory of positron determined by
 - rod current, and emitting angle
 - energy of positrons,
 - and emitting angle.
- Trajectory of positron scaled as rod radius

	Optimal Flat Co Rod Co	onversion Target onversion Target Summary	Summary Backup slides Acknowledgement	
Thank You				

Thank you for your attention and patience