Superconductive Positron Stacking Ring for CLIC

Eugene Bulyak¹, <u>Peter Gladkikh¹</u>, Tsunehiko Omori², Louis Rinolfi³, Junji Urakawa², Frank Zimmermann³

1 – NSC KIPT, Ukraine,
2 – KEK, Japan,
3 – CERN, Switzerland

Synchrotron damping time

 τ_{s} [turn] $\approx E_{O} / \Delta E$

Possible ways

Extremely intensive Compton scattering

Synchrotron radiation in superconductive stacking ring

Positions of equilibrium orbit. Dispersion at injection azimuth η =0.6 m, momentum deviation $\Delta p/p=8$ %, synchrotron frequency $Q_s = 1/15$. Ring circumference C=100 m, synchrotron damping τ_s =100 µs (333 turns)

Positions of equilibrium orbit. Dispersion at injection azimuth η =0.6 m, momentum deviation $\Delta p/p=8$ %, synchrotron frequency Q_s = 1/15; 1/30.

Positions of equilibrium orbit (1) and betatron oscillations (2). Dispersion at injection azimuth $\eta = 1.0$ m, momentum deviation $\Delta p/p=3$ %, synchrotron frequency $Q_s = 1/30$.

Positions of injected particle. Dispersion at injection azimuth $\eta = 1.0$ m, betatron amplitude $X_b = 5$ mm,momentum deviation $\Delta p/p = 3$ %, synchrotron frequency $Q_s = 1/30$.

Ring layout. Energy $E_0=5$ GeV, circumference $C \approx 125$ m, bend.field B=6 T, energy losses $\Delta E \approx 20$ MeV / turn, synchrotron damping time $\tau_s = 104 \ \mu s$. IS1,IS2, injection septums; RF, rf-sections; PE, positron extraction.

Dynamic aperture at injection azimuth. IB, injected beam; EO, equilibrium orbit; SB, septum blade. Momentum deviation $\Delta p/p_0=3$ %, dispersion at injection azimuth $\eta = 1$ m.

Injection simulation. Numbers near bunch position indicate turn number (O labels injected bunch)

Simulation parameters&results:

Injected particles number 100;

Transversal beam emittance 2000*10-6 m*rad (normalized);

Energy distribution is Gaussian $\Delta p/p_0 = 0.2 \% > (20-15)/5000$; Septum thickness 0.5 mm;

Pulse deviation of injected beam from reference $(p_{m_1}-p_o)/p_o=3$ %.

Two particles are out of the dynamic aperture and are being lost during the injection; One particle of the injected bunch is being lost on septum at the beginning of the first turn; Two particles are being lost on septum blade after the first turn; At a latter time particles are not being lost.

Thus, 95 particles are successfully injected, i.e. the injection efficiency is equal to 95 %.

Positions of injected bunch during 3 synchrotron cycles

Crazy SR (RF) power

 $N_{eb} = 7^* | 0^9 = Q_b \approx | . | 25 \text{ nC} = > |_{stor} = 2.25 \text{ A},$ $\Delta E = 20 \text{ MeV}, P_{SR} = 45 \text{ MW} !!!$

Operation mode

CR: circumference $C_{CR} \sim 300$ m, bunch spacing 6 ns ; SR: circumference $C_{SR} \sim 150$ m, bunch spacing 0.5 ns, bunch number $N_b \sim 960$;

Operation mode

CR: repetition rate f_{rep} =2.5 kHz (T_{rep} =400 μ s => 400 turns = 100 turns (gamma generation) + 300 turns (beam damping);

SR: 200 turns (positron injection) + 600 turns (beam damping);

TDT: $C_{TDT} \sim 50$ m, bunch number Nb ~ 320, bunch spacing 0.5 ns;

Quick positron beam extraction (3 turns in TDT) to TDT and to pre-damping ring from TDT immediately after that .

As a result: stored current in SR 2.25 A /(3*50)=15 mA => P_{SR} =300 kW

Main parameters of stacking ring

Parameter	Value
Positron energy, GeV	5
Ring circumference, m	125.012
Bending field, T	6
RF frequency, GHz	2
RF voltage, MV	50
Harmonics number	834
Bunch spacing, ns	0.5
Beam energy losses, Mev/turn	19.8
Synchrotron damping time, µs	104
Normalized emittance of injected beam, m*rad	2000*10 ⁻⁶
Dispersion at injection azimuth, m	1
Pulse deviation of injected beam, %	3
Injection efficiency, %	>90

Summary

Stacking ring with the superconductive bendings for the continuous positrons stacking is proposed.

The injection efficiency into proposed stacking ring is greater than 90 %

The proposed ring can be used as the base for the further R&D