

CLIC e⁺ status

Louis Rinolfi

General CLIC layout for 3 TeV

ALCPG Sources working group - Eugene - Oregon

^{22&}lt;sup>th</sup> March 2011

with real dimensions on the CERN site

CLIC

Flux of e⁺

	SLC (California)	CLIC (3 TeV)	CLIC (0.5 TeV)	ILC (RDR)	LHeC (CERN)
Energy	1.19 GeV	2.86 GeV	2.86 GeV	5 GeV	140 GeV
e ⁺ / bunch (at IP)	40 × 10 ⁹	3.7×10 ⁹	7.4×10 ⁹	20 x 10 ⁹	1.6×10 ⁹
e⁺/ bunch (after capture)	50 x 10 ⁹	7×10 ⁹	14×10 ⁹	30 x 10 ⁹	1.8×10 ⁹
Bunches / macropulse	1	312	354	2625	100 000
Macropulse Rep. Rate (Hz)	120	50	50	5	10
Number bunches / s	120	156 000	177 000	13125	20x10 ⁶
e ⁺ / second × 10 ¹⁴	0.06	1.1	2.5	3.9	18

CLIC hybrid targets

e⁺ source parameters for the baseline

Distance (crystal-amorphous) d = 2 m

Amorphous thickness e = 10 mm

O. Dadoun / LAL

- FOT is a code developed by X. Artru (IPN Lyon) in the years 80's
 - Conversion in C⁺⁺ and implementation in GEANT.
 - FOT simulates coherent and incoherent Bremsstrahlung radiations as well as Kumakhov radiation in channelling condition.
 - GEANT 4 simulates pair creation and incoherent Bremsstrahlung (+ usual G4 processes).
- Comparison have been done with V. M. Strakhovenko simulation (BINP)
- A difference between 10 to 20% , has been estimated, depending on the incident energy.
- LAL is studying the origin of this small discrepancy.

. G4FOT allows to simulate the production of photons from the crystal target, the production of positrons from the amorphous target and the capture downstream the amorphous target.

With G4FOT code, the e⁺ yield, from hybrid target, can be simulated with one single program.

T. Takahashi / Hiroshima Uni.

This experiment will be very useful as test bench to cross-check G4FOT simulations and experimental data

CLIC

CLIC Pre-Injector e⁺ Linac layout

F. Poirier / LAL

Mode	Pre-Injector	Total	Efficiency	RMS	Mean	FWHM	σ	σ _x ,
	length (m)	yield		bunch	Energy	energy	(mm)	(mrad)
				length	(MeV)	(MeV)		
				(mm)				
Accelerating	18.12	0.9	0.77	9.54	191.8	10	8.06	2.86
Decelerating	22.63	0.95	0.89	4.37	197.5	4.5	7.83	2.86

Total yield = N_{e^+} (@ 200 MeV) / N_{e^-} (@ 5 GeV)

Efficiency = N_{e+} (assuming 1.2% PDR acceptance) / N_{e-} (@ 5 GeV)

The decelerating mode in the Pre-Injector Linac improves the e⁺ performance and the efficiency

CLIC Injector e⁺ Linac

Black distribution = end of Injector Linac Red distribution = captured inside the PDR

Simulation s	S cm	N. e⁺	Yield e⁺/e ⁻	$\gamma \epsilon_{\chi}$ π mm mrad	γε_y π mm mrad	<e></e> Me∨	σ _E MeV	σ _z mm	ε_z π cm MeV
Oct. 2010	43480	4204	0.70	7685	8105	2825.4	126.3	5.4	61.6
March 2011	51910	2338	0.39	7071	7577	2859.4	46.7	3.3	23.1

e⁺ in PDR (October 2010): Yield e⁺/e⁻ =0.45

e⁺ in PDR (March 2011): Yield e⁺/e⁻ =0.35

ALCPG Sources working group - Eugene - Oregon

22th March 2011

Compton ring is very attractive for the CLIC polarized positron sources:

1) no modification in the Main Linac

CLIC

- 2) no modification of the Main Beam Injector complex apart to install a new ring
- 3) could work in parallel with the existing conventional hybrid targets

BUT it needs:

- > a Compton ring design (high beam current, double chicane, high RF voltage,...)
- ➤ a strong R&D on laser (laser energy, laser pattern,...)
- > a careful optimization of the optical cavity and IP (beam size, stability,...)
- ➤ a high stacking efficiency
- a new design of the Pre-Damping (momentum compaction, RF voltage, damping times, dynamic aperture,...)

CR + SR + TDT as e⁺ source

P. Gladkikh / NSC-KIPT

Collaborations are ongoing with the following institutes:

Compton ring: KEK - NSC/KIPT/Karkhov

ERL: KEK - LAL

Compton Linac: BNL

Undulator: ANL - DESY – CI – Lancaster Uni.

CERN acknowledges them strongly

1) The unpolarized e⁺ source is based on hybrid targets, using channeling. Further studies are ongoing with simulations (G4FOT, GEANT4, FLUKA,...) The beam power deposition in the targets remains a critical issue related to the target breakdown.

2) Test facilities should be implemented. The KEKB experiment is an important step forward for the behavior of e⁺ sources.

3) The polarized e⁺ sources are under study for several configurations. For all of them, strong R&D program is mandatory for future linear colliders.

Thank you for contributions and discussions:

X. Artru, I. Bailey, E. Bulyak, I. Chaikovska, R. Chehab, J. Clarke, O. Dadoun, E. Eroglu, W. Gai, P. Gladkikh, T. Kamitani, A. Latina, W. Liu, T. Omori, J. Osborne, F. Poirier, T. Takahashi, J. Urakawa, A. Variola, A. Vivoli, C. Xu, V. Yakimenko, L. Zang, F. Zimmermann.

15 Institutes: ANL, BNL, BINP, CERN, Cockcroft Institute, DESY, Hiroshima University, IHEP, IPNL, KEK, LAL, Lancaster University, NSC-KIPT, SLAC, Uludag University