ALCPG2011 Eugene, March 19-23, 2011

Update on Backgrounds

Takashi Maruyama SLAC

Introduction

- Beam backgrounds are critically dependent on the IP beam parameters.
- Compare SB2009 and RDR at ILC 500 GeV
 - Beam pipe design
 - Vertex detector hits
 - BeamCal energy
 - Power load in the cryostats and the extraction line.
- Background sources (generated by Guinea-Pig)
 - Pairs
 - Radiative Bhabhas
 - Disrupted beam
- SiD detector and the extraction line in Geant 3

IP parameters and pairs

	500GeV RDR	500GeV TF	500GeV NoTF
Collision rate (Hz)	5	5	5
Bunch population (×10 ¹⁰)	2	2	2
Number of bunches	2625	1312	1312
RMS bunch length (mm)	0.3	0.3	0.3
Horizontal emittance (mm- mrad)	10	10	10
Vertical emittance (mm-mrad)	0.040	0.035	0.035
Horizontal beta function (mm)	20	11	11
Vertical beta function (mm)	0.40	0.20	0.48
Luminosity (x10 ^{34/} cm ² /s)	2.0	2.0	1.5
Number of pairs/BX (×10 ³)	100 ±0.9	232 ± 2.5	178 ± 1.8
Total energy/BX (TeV)	200 ± 3.8	583 ± 11.1	430 ± 8.1

Energy distribution at ILC 500 GeV

RDR

NOTF

TF

323k

693k

507k

196

194

194

4

SiD Forward Region

5 Tesla Solenoid Field Map Anti-DID field

Extraction line

Nosochkov (LCWS2007)

- Distance between the 1st and 2nd SC quads after IP is increased to provide sufficiently long warm section for push-pull design.
- For three options of L* = 3.51 m, 4.0 m, 4.5 m, the SC extraction quad QDEX1 is placed at 5.5 m, 5.95 m and 6.3 m. The 2nd SC quad QFEX2A is at fixed position, 9.6 m from IP.
- A long drift after QFEX2A provides transverse space for crab-cavity. The downstream warm quads start at 17.19 m.

6

Pair edge and Beam pipe design

- Pairs develop a sharp edge and the beam pipe must be placed outside the edge.
- Find an analytical function of the edge in Pt vs. Pz space.
- Taking into account the crossing angle and solenoid field, draw helices in R vs. Z space.
 SB2009 500 GeV TF

SiD beam pipe and pairs edge

500 GeV RDR Nominal

Beampipe design and pair edge

ILD Beampipe and 3.5 Tesla

SB2009 500 GeV TF

SiD Solenoid is 5 Tesla. If 4 Tesla, the beampipe is too small.

SB2009 500 GeV TF

VXD Hits

- There are many e+/e- outside the edge, which hit the vertex detector ٠ directly.
- Some vxd hits are due to low energy e+/e- produced in the BeamCal ٠ and backscattered toward the IP.
- Full detector simulation is required. •
 - Solenoid field map
 - **DID** field

VXD hits

e+/e- hits at 500 GeV

- Average and RMS from 20 bunches.
- 500 GeV TF ~ 2×500 GeV RDR
- Bunch-to-bunch variation is more than 15% due to some e+/e- spiraling the vertex detector layers and producing multiple hits.
- Anti-DID vs. No DID difference is smaller than the bunch-to-bunch variation.

VXD hit density / train

- Detector tolerance
- Use generic 1% pixel occupancy
- Dependent on sensor technology and readout sensitive window.
 - Standard CCD 20 μ m x 20 μ m
 - 2500 pixels/mm²
 - 6 hits/mm²/sw (assuming 1 hit→ 4 pixels)
 - Fine pixel CCD $5\mu m x 5\mu m$
 - 40000 pixels/mm²
 - 100 hits/mm²/sw (assuming 1 hit→ 4 pixels)

BeamCal energy

BeamCal Energy

	500GeV RDR	500GeV TF	500GeV NO TF
NO-DID Energy (TeV)	20.9	58.8	45.3
Anti-DID Energy (TeV)	12.0	38.2	29.1
Anti-DID radiation (Mrad/year)	100	160	120

- Total pair energy going into the BeamCal is dependent on the DID field.
 - ANTI-DID ~ ½ NO-DID
- 500 GeV TF has 3x more energy/BX than RDR
 - More difficult to tag high energy e-.
 - SUSY search sensitivity is reduced.
- Yearly radiation level is about 50% more in 500 GeV TF.

Pairs in extraction line

Radiative Bhabhas

Disrupted beam

Summary

- The beampipe design is compatible with SB2009.
- There are 2x more VXD hits per bunch in SB2009, but #hits per train is comparable.
- There is 3x more BeamCal energy in SB2009.
 - The two-photon veto efficiency will be reduced; simulation study is in progress.
- Power load in the extraction line is comparable.
 - The power load to the cryostat from radiative Bhabhas is larger than from pairs.