IR SR Update with a PEP-II Perspective

M. Sullivan Mar. 21, 2011

for the

Linear Collider Workshop of the Americas (ALCPG11) Mar. 19-23, 2011 Univ. of Oregon, Eugene, Ore.

1

Outline

- Introduction
- Upstream SR
 - Nominal settings
 - Upstream SR backscattering from dump line apertures
 - Mask setting where SR starts to hit the inner chambers
- Downstream SR from the dump line
 - Model 3 different beam energies
 - 250 GeV (optics set to this value from the lattice)
 - 225 GeV (Above optics scaled to this energy 90% of nom.)
 - 200 GeV (Above optics scaled to this energy 80% of nom.)
 - Get rates for photons striking downstream surfaces
 - Compute backscatter rate to the detector beam pipe and cryostats
- Summary and Conclusions

Introduction

- Started this study in order to become more familiar with the IR design
 - A lot of people have looked at this already
 - Another cross-check never hurts
- An important consideration is that the machine WILL NOT perform at design values either when the accelerator starts up nor when the first detector rolls online
- Yet the detectors will want to start taking data as soon as possible after startup AND they need to know when the machine settings (masks, coll., etc.) can damage subsystems

Intro (2)

 Both B-factories had a preliminary minimal detector in place before the main detector rolled onto the beam line in order to see what the radiation levels were from the machine

– I'm sure this has been considered here

 In addition, simulation of the nonoptimal machine can guide thinking about how to handle early machine conditions

IP parameters

IP and	I General Parameters								
								upgrade	
	Centre-of-mass energy	E_{cm}	GeV	200	250	350	500	1000	
	Beam energy	E beam	GeV	100	125	175	250	500	
	Lorentz factor	γ		1.96E+05	2.45E+05	3.42E+05	4.89E+05	9.78E+05	
	Collision rate	f rep	Hz	5	5	5	5	4	
	Electron linac rate	f linac	Hz	10	10	5	5	4	
	Number of bunches	n _b		1312	1312	1312	1312	2625	
	Electron bunch population	Ν.	×10 ¹⁰	2	2	2	2	2	
	Positron bunch population	N_{+}	×10 ¹⁰	2	2	2	2	2	
	Bunch seperation	Δt_b	ns	740	740	740	740	356	
	Bunch seperation \rtimes_{RF}	$\Delta t_b f_R$	F	962	962	962	962	463	
	Pulse current	I beam	mA	4.33	4.33	4.33	4.33	9.00	
	RMS bunch length	σ_z	mm	0.3	0.3	0.3	0.3	0.3	
	Electron RMS energy spread	$\Delta p/p$	%	0.22	0.22	0.22	0.21	0.11	_
	Positron RMS energy spread	$\Delta p/p$	%	0.17	0.14	0.10	0.07	0.04	<u> </u>
	Electron polarisation	Ρ.	%	80	80	80	80	80	
	Positron polarisation	P_+	%	31	31	29	22	22	
	Horizontal emittance (linac exit)	γε _x	μm	10	10	10	10	10	<u> </u>
	Vertical emittance (linac exit)	$\gamma \varepsilon_y$	nm	35	35	35	35	35	
	IP horizontal beta function	β_x^*	mm	16	12	15	11	30	
	IP vertical beta function (no TF)	β_y^*	mm	0.48	0.48	0.48	0.48	0.30	
	IP vertical beta function (TF)	β_y^*	mm	0.2	0.2	0.2	0.2	0.2	
									1

IP parameters

I I		I	1	I I				I I	
	IP RMS horizontal beam size	σ_x^*	nm	904	700	662	474	554	
	IP RMS veritcal beam size (no TF)	σ_y^*	nm	9.3	8.3	7.0	5.9	3.3	
	IP RMS veritcal beam size (TF)	σ_y^*	nm	6.0	5.3	4.5	3.8	2.7	
No TF	Horizontal distruption parameter	D_x		0.2	0.3	0.2	0.3	0.1	
	Vertical disruption parameter	D_y		20.7	23.8	21.3	24.9	19.2	
	Horizontal enhancement factor	H_{Dx}		1.1	1.1	1.1	1.2	1.0	
	Vertical enhancement factor	H_{Dy}		5.7	6.0	5.8	6.1	3.6	
	Total enhancement factor	H_D		1.8	1.9	1.8	2.0	1.5	
	Geometric luminosity	L geom	$\times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.2	0.4	0.5	0.8	1.8	
	Luminosity	L	×10 ³⁴ cm ⁻² s ⁻²	0.5	0.7	0.8	1.5	2.8	
	Fraction of luminosity in top 1%	L _{0.01} /L	1		0.96	0.88	0.73		
	Average beamstrahlung parameter	Yav		0.013	0.021	0.032	0.063	0.109	
	Maximum beamstrahlung parameter	Y_{max}		0.032	0.051	0.075	0.150	0.260	
	Average number of photons / particl	n _γ		0.96	1.22	1.28	1.74	1.46	
	Average energy loss	$\delta E_{\rm BS}$	%	0.53	1.04	1.55	3.76	4.83	
	Number of pairs per bunch crossing	N _{pair}	×10 ³		97.4	214	494		
With TF	Luminosity	L	×10 ³⁴ cm ⁻² s ⁻²	0.5	0.8	1.0	2.0		
		SE	0/		0.6	1.6	3.6		
	Average energy loss	OL BS	70		0.0	1.0	5.0		_
	Average energy loss Number of pairs per bunch crossing	N _{pair}	×10 ³		115	255	596		

Upstream

- Description
 - Beta functions
 - IR Beam pipe
 - 11 m mask
- Three cases with different mask settings and beam profiles
- Upstream radiation hitting downstream pipes/septums/coll., etc.
 - Backscatter rates
 - Hit rates on detector beam pipe for various cases

;11 M. Sullivan Mar. 19-23, 2011

IP Beam pipe

SR upstream rates

- Have run three cases with the mask at 11.15 m from the IP at various settings
 - Case 1 (nominal design)
 - Mask nominal (2.5 mm radius) (~ $5\sigma_x$)
 - Beam profile -- design gaussian (no tails)
 - Beam scan out to $5\sigma_x$ 50 σ_y
 - Results
 - No direct hits on the detector beam pipe
 - No direct hits on downstream septum

SR rates

- Case 2

- Mask opened to a 5 mm radius (~ $10\sigma_x$)
- Beam profile -- design gaussian (no tails)
- Beam scan out to $10\sigma_x$ 50 σ_y

– Results

- Direct hits on the upstream cryostats (> $6\sigma_x$)
 - Power level very small and photon rate (10⁻³/bunch)
- No direct hits on the detector beam pipe
- Direct hits on downstream septum (2.8m, >8σ_x)
 - Rate too small to worry about with design gaussian beam profile

SR rates

- Case 3

- Mask opened (r = 5 mm, ala case 2) (~10 σ_x)
- Beam profile design gaussian but with tails (~0.5% 4-12σ)
- Beam scan out to $10\sigma_x$ 50 σ_y
- Results (same as case 2 but higher numbers)
 - Direct hits on the upstream cryostats (> $6\sigma_x$)
 - Power level low (3×10⁻⁴W) and photon rate 10⁴/bunch (possible outgassing)
 - No direct hits on the detector beam pipe
 - Direct hits on downstream septum (2.8m, $>8\sigma_x$)
 - Rate 2.5×10⁵/bunch → 5×10³ backscatter → Inc. on central BP= 0.08/bunch

ALCPG11

Mar. 19-23, 2011

Upstream SR Summary

- Nominal case (mask radius 2.5 mm)
 OK
- Opening up the mask to 5 mm radius
 - Some direct hits on upstream cryostats and on downstream septum. Levels very low with design gaussian beam profile. $6-8\sigma_x$.
- Mask at 5 mm radius + non-gaussian tails
 - Power levels and photon rates increase as the beam tail particle density increases. With 0.5% in the tails photon rate may cause outgassing on cryo beam pipe
- No direct hits on IP beam pipe with mask out to 10 mm radius

Downstream

- Downstream SR generation
 - There has been a study of the SR photon rates for various surfaces on the dump line apertures "ILC BDS Collimation System Performance and extraction beam lines simulations", Drozhdin, Yang, 2006. I have not had a chance to fully study this work.
- Energy distribution for disrupted beam
- Beta functions at 90% and 80% of 250 GeV
- Magnet apertures
- SR hits and power results
- SR backscatter and hit rate on detector beam pipe and cryostats

Beam energy distribution going into the dump line

From SLAC-PUB-1159, Nosochkov, *et. al.*, "ILC Extraction Line for 14 mrad Crossing Angle", 2005

Beta functions

(m) (m)

ILC 500GeV 14mrad

2007 lattice

ILC 500GeV 14mrad

ILC 500GeV 14mrad

Magnet values

•	Name	Z (face)	L	r or ½ gap
•		(m)	(m)	(mm)
•	QDEX1	5.5	1.06	15
•	QFEX2A	9.6	1.1	30
•	QFEX2B	17.2	1.9	44
•	QFEX2C	19.4	1.9	44
•	QFEX2D	21.6	1.9	44
•	QFEX3A	23.8	2.1	44
•	QFEX3B	26.2	2.1	44
•	QFEX3C	28.6	2.1	44
•	QFEX3D	31.0	2.1	51
•	QFEX3E	33.3	2.1	61

Magnet values

•	Name	Z (face)	L	r or ½ gap
•		(m)	(m)	(mm)
•	QDEX4A	35.7	1.96	71
•	QFEX4B	38.0	1.96	85
•	QFEX4C	40.2	1.96	85
•	QFEX4D	42.5	1.96	85
•	QFEX4E	44.7	1.96	85
•	BVEX1	47.7	2.0	85
•	BVEX2	50.0	2.0	85
•	BVEX3	56.2	2.0	85
•	BVEX4	58.5	2.0	85

Magnet values

•	Name	Z (face)	L	r or ½ gap
•		(m)	(m)	(mm)
•	BVEX5	47.7	2.0	85
•	BVEX6	50.0	2.0	85
•	BVEX7	56.2	2.0	85
•	BVEX8	58.5	2.0	85
•	BVEX1P	58.5	2.0	85
•	BVEX2P	58.5	2.0	85
•	BVEX3P	58.5	2.0	85
•	BVEX4P	58.5	2.0	85
•	BVEX1G	58.5	2.0	85
•	BVEX2G	58.5	2.0	85

Downstream SR Results

		60) m ECOLL	2% bk	scat. Frac.
•	Beam enr.	Pwr (W)	γ/bunch	γ/bι	unch
•				to IP	to Cryost.
•	Solid ang. fra	С.		4×10 ⁻¹⁰	8×10 ⁻⁹
•	Nom. (Undis.)) 173	1.4×10 ¹⁰	0.11	2.2
•	Nom. (Dis.)	102	6×10 ⁸	0.005	0.10
•	90% (Dis.)	146	1.1×10 ⁹	0.009	0.18
•	80% (Dis.)	62	5.6×10 ⁸	0.004	0.09

Downstream SR Results

	75-100 m beam pipe			2% bks	cat. Frac.
•	Beamenr. F	wr (vv)	γ/bunch	γ/bu to IP	to Cryost.
•	Solid ang. frac	2.		1.7×10 ⁻¹⁰	1.4×10 ⁻⁹
•	Nom. (Undis.)	616	4.9×10 ¹⁰	0.11	1.3
•	Nom. (Dis.)	363	2.2×10 ⁹	0.007	0.084
•	90% (Dis.)	60	4.4×10 ⁸	0.001	0.012
•	80% (Dis.)	9.7	8.8×10 ⁷	0.0003	0.004

Downstream SR Results

•	Beam enr.	100-125 m Pwr (W)	beam pipe γ/bunch	2% bk γ/bι	scat. Frac.
•	Solid ang. fra	ac.	•	to IP 9.0×10 ⁻¹¹	to Cryost. 1.2×10 ⁻¹⁰
•	Nom. (Undis	.) 1823	1.4×10 ¹¹	0.25	0.34
•	Nom. (Dis.)	1076	6.5×10 ⁹	0.012	0.16
•	90% (Dis.)	368	2./×10 ⁹	0.005	0.006
•	00% (DIS.)	03	1.5×10°	0.0014	0.0010

Downstream SR Summary

- Rates look pretty good (too low to worry about)
- Need to do a more careful estimate of the backscatter rate (2% assumed right now)
- No backscatter rates worth noting on either the cryostats or the IP chamber

Further work

- More cross-checks
- Use actual disrupted energy distribution
- More carefully model backscatter rates
- Some concern about forward scattering from far upstream SR sources (reflection from the inside beam pipe surface)

Conclusions

- Nominal running conditions are OK
- Larger beam emittances and/or a larger upstream mask apertures start to allow hits first on the cryostat beam pipes
- One then becomes sensitive to the high sigma transverse particle distribution in the beam bunch

- All the primary sources of SR look to be under good control
- Worth looking at secondary sources again to make sure they are (still) not a problem
- Important to try to model the non-ideal startup machine