Performance of FONT at ATF2

Philip Burrows

John Adams Institute

Oxford University

Feedback On Nanosecond Timescales

Beam-based FB R&D for future Linear Colliders

Philip Burrows Glenn Christian Javier Resta Lopez Colin Perry

Graduate students: Ben Constance Robert Apsimon Douglas Bett Alexander Gerbershagen Michael Davis

Valencia, CERN, DESY, KEK, SLAC

Philip Burrows

Outline

- Brief reminder of intra-train feedback system
- Implementation in ILC + CLIC IRs
- Prototype hardware development (FONT systems)
- Summary + outlook

IP intra-train feedback system - concept

FONT – Feedback On Nanosecond Timescales

(Oxford, Valencia, CERN, DESY, KEK, SLAC)

CLIC FD region

ILC Final Doublet Region (SiD for illustration)

Remaining issues

- Engineering of real hardware optimised for tight spatial environment: BPM, kicker, cables ...
- Further studies of radiation environment for FB: was studied for ILC, less so for CLIC; where to put electronics?

need to be rad hard? shielded? off to side?

• EM interference: beam $\leftarrow \rightarrow$ FB hardware

kicker $\leftarrow \rightarrow$ detector

Prototyping status

FONT system prototype (schematic)

FONT3 CLIC prototype at KEK/ATF (2004-5)

56ns train of bunches separated by 2.8ns

FONT system loop (schematic)

FONT4 ILC prototype at KEK/ATF (2006-9)

300ns train of bunches separated by 150ns

Philip Burrows

FONT5 location

FONT5 schematic

Each FONT5 system loop

300ns train of bunches separated by 150ns

FONT5 beamline hardware

Philip Burrows

3 new BPMs and 2 new kickers installed in new ATF2 extraction line February 2009; BPM movers installed 2010

New FONT5 digital FB board

Xilinx Virtex5 FPGA

9 ADC input channels (TI ADS5474)

4 DAC output channels (AD9744)

Clocked at 357 MHz phase-locked to beam

4x faster than FONT4

FONT5 DAQ

One damping ring cycle (463ns) data returned each pulse:

- RS232 over ethernet
- All BPM sum (charge) and difference signals
- Absolute sample time adjustable in 70ps taps: accurate peak sampling
- Ratio of difference to sum peaks gives y-position
- Pedestal subtraction
 w. on-board trim DACs
 (no latency gain)

Philip Burrows

Outline of FB results

- Latency
- Basic loop performance
- Banana correction
- Coupled-loop FB results
- Next steps

FONT5 latency: P2 → K1 loop

Latency estimate

•	Time of flight kicker – BPM:	12ns
•	Signal return time BPM – kicker:	32ns
	Irreducible latency:	44ns
•	BPM processor:	10ns
•	ADC/DAC (4.5 357 MHz cycles)	14ns
•	Signal processing (8 357 MHz cycles)	22ns
•	FPGA i/o	3ns
•	Amplifier	35ns
•	Kicker fill time	3ns
	Electronics latency:	87ns
•	Total latency budget:	131ns

P2 → K1 loop performance

P2 → K1 loop performance

$P2 \rightarrow K1$ loop jitter reduction

Factor of 5 jitter reduction

Bunch 2 jitter vs. gain

Philip Burrows

Bunch 1-2 correlations

Feedback removes bunch correlations

Philip Burrows

Bunch 1-2 correlations vs. gain

Philip Burrows

0.4 micron jitter propagation

Philip Burrows

Jitter propagation to ATF2 IP

Assuming perfect lattice, no additional jitter sources (!)

 These spectacular results were obtained with beam of exceptional quality:

Incoming train jitter: 2um

Bunch 1-2 correlations: 96%

Bunch 2-3 correlations: 80%

This is NOT typical!

Philip Burrows

$P2 \rightarrow K1$ loop jitter reduction

13 um \rightarrow 5 um \rightarrow 3 um

FB simulation: P2-K1+P3-K2 coupled

Bunch 1

Philip Burrows

Further Feedback Tests

- K1 P2 loop
- K2 P3 loop
- K1 P2 + K2 P3 uncoupled
- K1 P2 + K2 P3 coupled

K1 – P2 loop gain scan

Bunch 2 in P2 Mean (µm) vs K1 P2 gain

K2 – P3 loop gain scan

Bunch 2 in P3 Mean (μm) vs K2 P3 gain

K1 – P2 + K2 – P3 coupled: K1 gain scan

/03/11

K1 – P2 + K2 – P3 coupled: K2 gain scan

/03/11

Coupled loop jitter reduction

Summary: FONT5

- IP feedback concept well advanced
- Prototype meets ILC technical requirements in terms of BPM resolution, kicker drive and latency
- Future effort focussed on achieving ATF2 goals

IPBPM configuration

IPBPM configuration

Kicker location

Some working assumptions (1)

- Kicker centre ~ 0.5m upstream of IPBPM
- Kicker aperture 40mm (?)
- Kicker length ~ 15 cm (?)
- Matched 50 Ohm terminations

→ Half of current FONT5 sensitivity:

0.5 urad / Amp

(can easily scale from above assumptions)

Some working assumptions (2)

Dynamic correction range:

- Beam size 37 nm
- Beam y jitter ~ beam size (?)
- 2 sigma correction

→ 70 nm @ IP = 140 nrad kick

 \rightarrow drive current = 0.15/0.5 ~ 0.3 A (per strip)

Some working assumptions (3)

Amplifier:

• Peak power = 0.3 **2 x 50 = 5 W per strip

 \rightarrow eg. Minicircuits: 10W, 5 \rightarrow 500 MHz

- Low latency (5 ns)
- Output can be pulsed for long bunch train
- No margin for kick

IPBPM electronics

(Aeyoung Heo)

- 1. Improved conversion gain
- 2. Low Noise Figure
- 3. Narrow Bandwidth
- 4. Latency: less than 20ns

Philip Burrows

Digitisation of IPBM signal

- Digitise I and Q signals
- Derive amplitude and phase

→ charge-independent position signal

- FONT5 ADCs (TI ADS5474) clocked at 357 MHz
- Very high bandwidth sample point
- Sample time adjustment sensitivity c. 100ps

FONT Digitisation

$$I(n) = \frac{A_{BPM}}{A_{REF}} \cos(\phi_{BPM} - \phi_{REF})$$

$$Q(n) = \frac{A_{BPM}}{A_{REF}} \sin(\phi_{BPM} - \phi_{REF})$$

Joshi

Philip Burrows

Digitisation of IPBM signal

- Digitise I and Q signals
- Derive amplitude and phase

→ charge-independent position signal

- FONT5 ADCs (TI ADS5474) clocked at 357 MHz
- Very high bandwidth sample point
- Sample time adjustment sensitivity c. 100ps
- Up- and downstream IPBPM signals needed

Latency estimate

•	Amplifier (as described)	5ns
•	Kicker fill (15cm)	0.5ns
•	Beam flight time amplifier \rightarrow IPBPM	2ns
•	Cables (3 x 1.5m?)	23ns
•	IPBPM electronics	40ns?
•	Digital processing	60ns
Total		131ns

Summary of ATF2 IP FB

- Conceptual design for IP FB system
- System parameters look feasible
- Critical parameters: dynamic correction range, bunch spacing
- Digitisation of IPBPM I and Q signals is easiest approach
- Technical details need to be finalised: locations of BPM + kicker, kicker aperture, cable runs ...

- Conceptual design for IP FB system
- System parameters look feasible
- Critical parameters: dynamic correction range, bunch spacing
- Digitisation of IPBPM I and Q signals is easiest approach
- Technical details need to be finalised: locations of BPM + kicker, kicker aperture, cable runs ...

$P2 \rightarrow K1$ loop jitter reduction

Bunch correlations

Bunch 1

Bunch 2