Update of permanent FD

Kyoto University Y. Iwashita

Introduction

Standpoint - why do we need this?

anxiety on vibration of Sc-EM (straightforward)

tunability requested (fixed PMQ proven)
new device needs handling experience.

Brief Review of the history

What is left to do?

LHC magnet (massive & rigid!)

Some ILC FF Magnet Design Challenges.

QD0 Cryostat Design for L* = 4.5 m.

OD0

Force Neutral

> SDO->

- Space is very tight inside the detector solenoid.
- Magnets must perform in ≈3T background field.
- For the active, beam based, feedback system to work need roughly 50 nm stability.

Actively Shielded QD0

Inner/Outer Anti-Solenoid Coils

Present design avoids "flowing" helium; concept will be tested with QDO R&D Prototype.

2010.06.14

B. Parker, "Superconducting FF at ATF2: Motivation & Status," Annecy Meeting

Permanent Magnet Study Short History

2002~2005 First R&D program for FFQ

Permanent Magnet Quadrupole for Final Focus Lens

in a Linear Collider

2002 Fixed strength PMQ

2003 Adjustable PMQ (double ring) 2004 Measurement and fine tuning

2005 Higher gradient at small bore

2006~2009 Second R&D program

PMQ for Linear Collider and Neutron optics 2006 Rapid Cycling Sextupole for neutron 2007 Adjustable PMQ (2nd model) started 2008 Assemble, Measurement and Adjustment 2009 Design and fabrication of Magnet mover No budget year 2010!

The first prototype of "superstrong" Permanent Magnet Quad.

The 20mr Variable FFQ Magnet

hole for outgoing beam

hole for incoming beam

Adjustable Permanent Magnet Quadrupole outer ring SUS plate SUS cover inner ring Beering Permanent. magnets space for the strong position outgoing beam line 1cm pieces of MS-1 MS-1 endplates rotation pole material permanent magnet Permanent Magnet (NEOMAX38AH) The PMQ is composed of an inner ring and four outer rings (Double Ring Structure). Only the outer rings are rotated in order to change the integrated gradient. The fixed inner ring suppresses any errors caused by rotation of outer rings. weak position

ALCPG11, Eugene, OR, 2011/3/21

9

Magnetic Center Movement

The cm values show the Switched-On-Length

The center moves several μ m for 20% strength change.

See http://accelconf.web.cern.ch/AccelConf/104/PAPERS/TUP81.PDF (LINAC'04)

Gluckstern's Adjustable PMQ – 5-Ring-Singlet –

for ILC Final Focus Doublet

Gluckstern's skewless variable PMQ

R.L. Gluckstern and R.F. Holsinger: Adjustable Strength REC Quadrupoles, IEEE Trans. Nucl. Sci., Vol. NS-30, NO. 4, August 1983, http://epaper.kek.jp/p83/PDF/PAC1983_3326.PDF

Gluckstern's 5-ring PMQ Singlet: "Continuously Adjustable" PMQ fabricated

Supersonic Motor (nonmagnetic)

Disc(20mm)

The 5-ring singlet PM-FFQ

ATF2 and ILC				
Para. at IP	ATF2	ILC		
Beam Energy [GeV]	1.3	250		
Length to the FFQ [m]	1	3.5-4.2		
γε _x [m-rad]	3×10 ⁻⁶	1×10 ⁻⁵		
γε _y [m-rad]	3×10 ⁻⁸	4×10 ⁻⁸		
β _x [mm]	4.0	21		
β _y [mm]	0.1	0.4		

*ATF2 proposal, ATF2 Group, Aug. 11, 2005

Adjustment

First observations

- \bigcirc GL (100~20%) can be covered.
- Angle adjustment needed.
- Seproducible magnet center excursion.
- But the value is big – needs adjustment.
- Minor mechanical modification will improve the excursion.

Alignment Jig

Adjustment Algorithm

 Multipole components (up to 11) generated by single piece and those with 1mm offset are calculated by PANDIRA.
The differences (11 Re and Im values) are obtained for all 20 pieces.

3) They consists of total 22x20 values.

4) Solve equ.

The equ's correspond to Q should be replaced by all 1's (to keep circumference) and the one of 11th.

By Rotation Coil

Preliminary Results

ALCPG11, Eugene, OR, 2011/3/21

24

Mover

Three DOF's

- Up-Down
- Left-Right
- Yawing (rotate around axis)

Remote control system delayed (next month?).

Test at ATF2 Beam Line

Further test

- - Position by BPM
 - (Size by Shintake Monitor downstream)
 - Evaluation: x-y coupling, high order, stability, Vibration evaluation (<50nm?), reproducibility, etc.
- Practical experience: handling, installation, stability...

^{m]} ILC Interaction Region⁴Engineering Design Workshop "IRENG'07" @SLAC Sept.2007

Rough Calculation

http://ilcagenda.linearcollider.org/conferenceDisplay.py?confld=2555

2008.2.14

http://ilcagenda.linearcollider.org/conferenceDisplay.py?confld=2555

Remarks

- PMQs' with the DR (double ring) and the FRS (5ring-singlet) configurations have been developed.
- DR has good stability, but has iron pieces in. (can be affected by external field)
- FRS consists of only magnets and has continuous adjustability.
- Use FRS for near and DR for far region?
- Need different tuning procedure?

Backups

PM can be stronger for multipoles

FM

- B increase rapidly for 2n-poles:
 - ~ r^{n-1} (n=4 for octupole)
- Max B appears beyond the bore radius for EM's.
 - Max reverse B at the bore radius for PM's.

Measurement on each PMQ Just before and after a wrong magnet piece replacement 10⁵ ABS R4 after ABS R4 before 10⁴ @r=20mm 10^{3} 10² ABS 10¹ 10⁰ 10⁻¹ 10-2 10 2 8 Ν

Reduced errors (still large - to be adjusted).

noise level $< 10^{-5}$

External Stray Field 10 -9 -By (bare PMQ)By with Fe Case 10² 148T/m 8 10¹ 7 — By [Gauss] 6 -10⁰ 5 -**10**⁻¹ 4. Outgoing beam ø20 10⁻² 3 35mm 2 — 10⁻³ 4.0 5.0 6.0 X [cm] 7.0 8.0 3.0 1

Tolerances

To keep beam size $\Delta X < X/10$

- \star Rotation Error
 - ➡ see table
- ★Length Error
 - ➡ <100µm
- \star Position Error

Disc	Length[mm]	Tolerance
		[rad]
1st	17.33	$< 2.2 \times 10^{-4}$
2nd	55.00	$< 7.0 \times 10^{-5}$
3rd	75.34	$< 5.3 \times 10^{-5}$
4th	55.00	$< 7.6 \times 10^{-5}$
5th	17.33	< 2.5×10-4

- ➡ No effect on beam size.
- \rightarrow 1µm tolerance of FFQ for 1nm shift at IP

Demagnetization by Radiation

Energy deposit

	GLD	SiD	SiD (by Takahashi)	neutron
BeamCAL	17mW	13mW	29mW	
QD0	94mW	97mW	147mW	10 ⁵ [n/cm ² s]
SD0	11mW	11mW	11mW	
QF1	16mW	18mW	15mW	
SF1	0.4mW	0.3mW	1mW	

very preliminary results by T.Abe (university of Tokyo), in private communication

Demagnetization by 14MeV neutron

Magnet	Demag. ratio [/1x10 ¹³ n/cm ²]	iHc [Oe]
47H	10.2%	
44H	1.8%	16
39SH	0.7%	21
32EH	0.3%	30

T. Kawakubo, et al., The 14th Symposium on Accelerator Science and Technology, Tsukuba, Japan, November 2003, pp. 208-210, in Japanese, http://conference.kek.jp/sast03it/WebPDF/1P027.pdf

Continuous 1mo.(2.6x10⁶s) operation may cause about 0.01[%] of (reversible?) demagnetization on NEOMAX 32EH. (1% for 10 years) ... needs more info.

9th ACFA ILC Physics and Detector Workshop & ILC GDE Meeting