

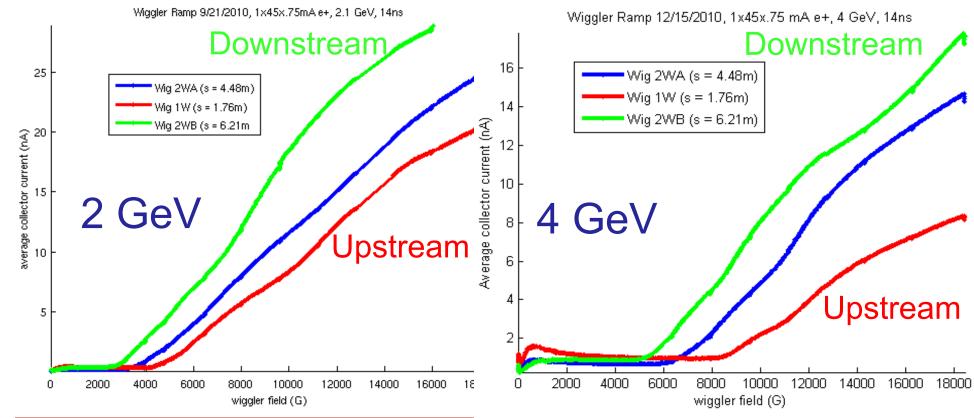
Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

CESRTA EC Update March 22, 2011

Mark Palmer for the CesrTA Collaboration

Introduction

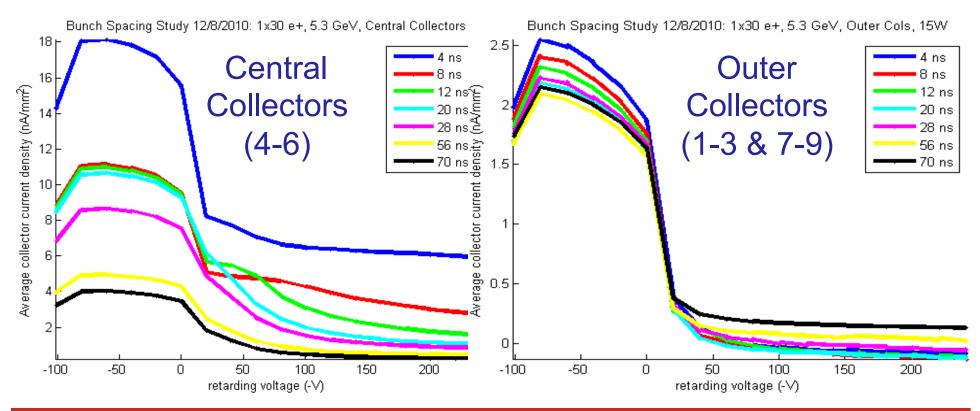
- Update since IWLC2010
- Outline:
 - CESRTA Status
 - December 2010 Run
 - January 2011 Down and Recovery
 - Plans for April 2011 Run
 - CESRTA Phase I Report


- Formally completed the Phase I program in October 2010
 - Funds available for a December run
 - NSF has approved a 3 year extension for operations at ~1/2 the level of the Phase I program
 - ~40 running days per year vs ~80+ running days per year
 - Focused more generally on "lepton collider R&D"
 - Major focus at the moment is preparation of a "Phase I Report" which is targeted for mid-year release
- Extended Program (Mar 1, 2011 through 2013)
 - 2011 runs planned: April 1-19, June 10-28, Oct 21 Nov 8
 - Funding has not yet arrived due to US CR
 - April run will have reduced scope
 - June run tentatively planned, pending arrival of funding
- For EC work, the major focus is presently on the simulation and analysis efforts

- A 2.5 week run was carried out Dec 7-24, 2011
 - Major focus on
 - EC Build-Up & Mitigation Studies
 - LET & Instrumentation (D. Rubin Talk Monday)
 - EC Beam Dynamics Studies (G. Dugan Talk Today)
 - EC Build-Up & Mitigation Studies
 - Basic characterizations
 - Photon scattering studies in L0 ("wiggler ramp study")
 - Bunch spacing studies
 - Shielded Pickup Studies
 - In-situ SEY station measurements

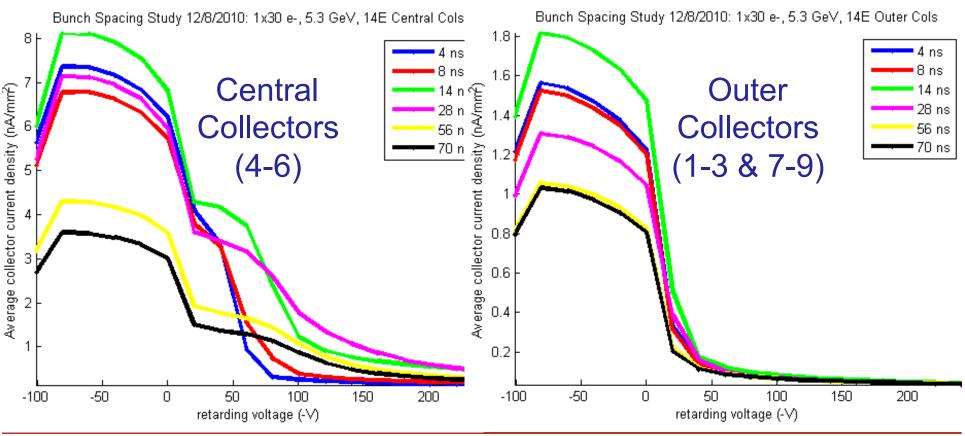
• Experiment:

- Store beam (1x45x.75mA e+, 14ns for these studies)
- Ramp L0 wiggler magnets between full field (1.9T) and zero field while maintaining current
- Monitor RFA and RGA signals throughout ramp
- Currents found to be too low for good RGA sensitivity



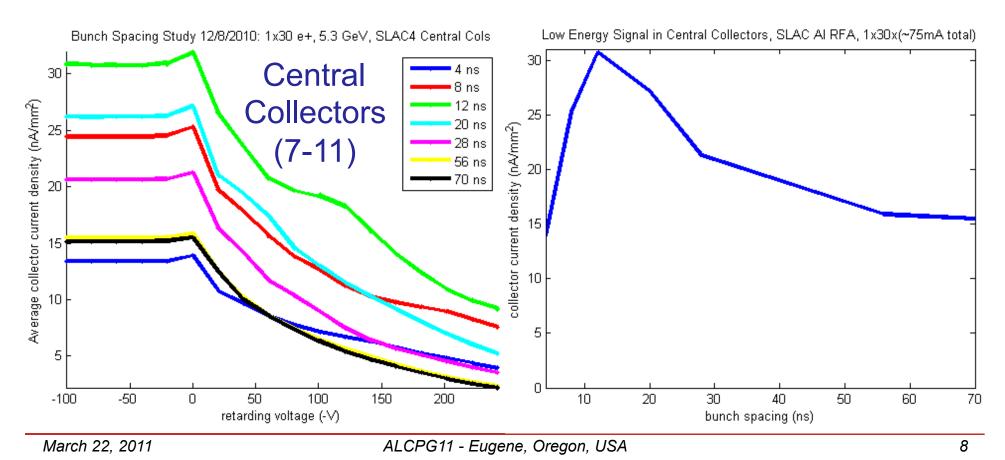
Bunch Spacing Study: Positrons

- 1x30x2.5mA e+, 5.3 GeV with various bunch spacings


 -4, 8, 12, 20, 28, 56, 70ns spacings
- Drift Region RFAs

Bunch Spacing Study: Electrons

1x30x2.5mA e-, 5.3 GeV 4, 8, 14, 20, 56, 70ns spacings Drift Region RFAs

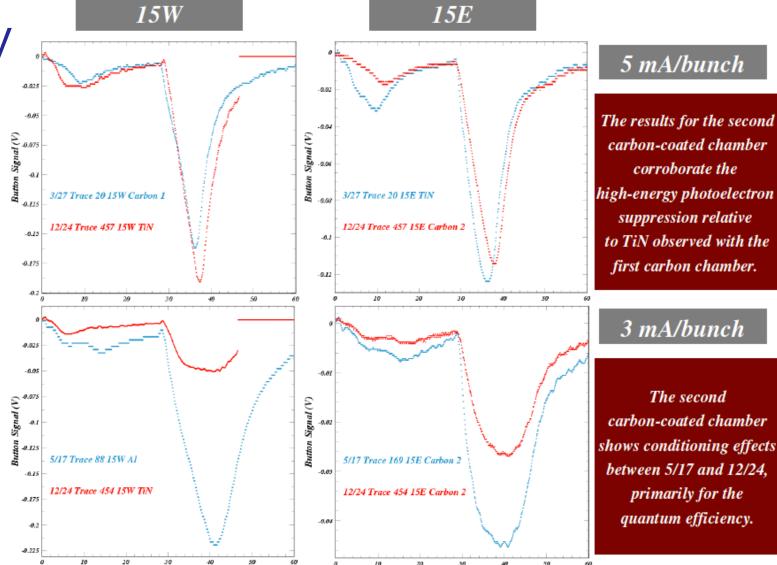


Bunch Spacing Study: Dipole

- 1x30x2.5mA e+, 5.3 GeV with various bunch spacings

 -4, 8, 12, 20, 28, 56, 70ns spacings
- Chicane Dipole (AI) RFAs

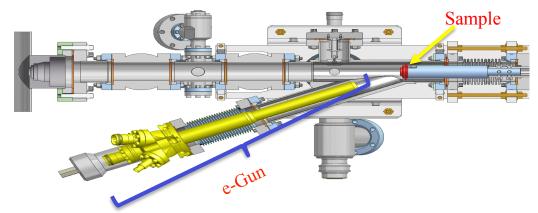
Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)


Shielded Pickups: Chamber Comparisons

5.3 GeV

The carbon coating suppresses high-energy photoelectrons compared to the TiN coating.

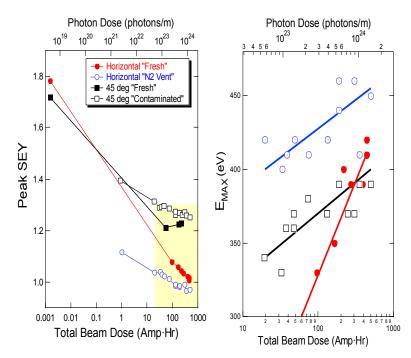
The q.e. for reflected photons and the SEY are both much smaller for TiN compared to Al.


The 3-mA TiN witness signal is a factor of 5 smaller than for 5 mA/bunch. (see slide 5)

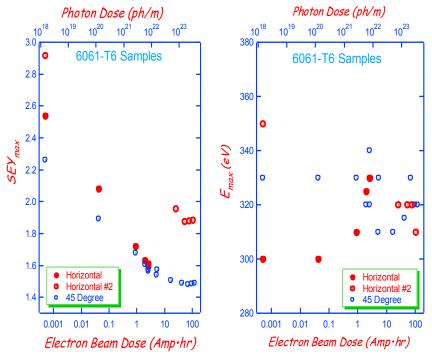
• Significant analysis effort underway to characterize photoelectron distribution and $\delta(0)$ information from SPU data

In Situ SEY Measurements

In Situ SEY Station

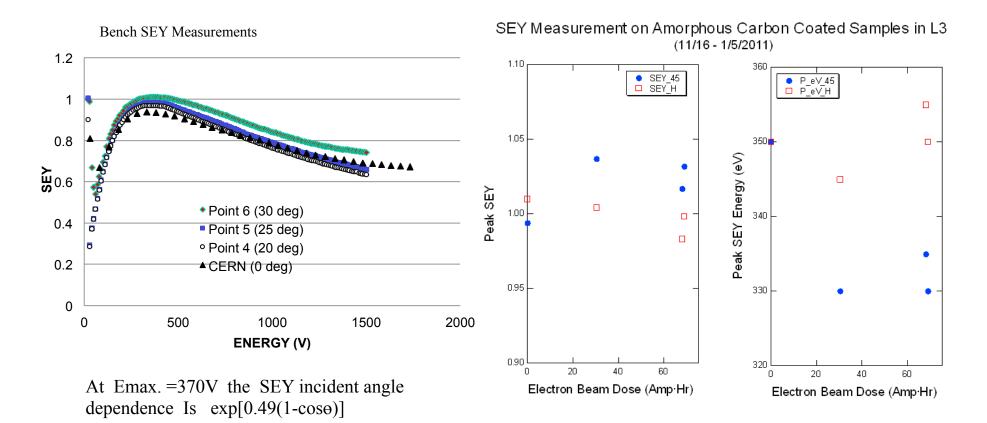

Samples Tested In CESR Beam Line

Sample	SEY before Conditioning	SEY after Conditioning	Sample Received from
TIN/AI	1.8	1.04 (<1 after N ₂ vent)	SLAC
AI6061	2.55	1.6	Cornell
AI6061	2.9	1.85	Cornell
a-C	1.01	1	CERN
DLC	1.6		KEK



In Situ SEY measurements

AL-TIN Sample



AI 6061-T6 Sample

• Amorphous Carbon samples (CERN)

January 2011 Down

Mitigation	Drift	Quadrupole	Dipole	Wiggler	Institutions Providing Chambers
Al	~	 ✓ 	~		CU, SLAC
Cu	 ✓ 			~	CU, KEK, LBNL, SLAC
TiN on Al	 ✓ 	 ✓ 	~		CU, SLAC
TiN on Cu	~			~	CU, KEK, LBNL, SLAC
Amorphous C on Al	~				CERN, CU
Diamond-like C on Al	1/2011				CU, KEK
NEG on SS		S	uccessfully	,	CU
Solenoid Windings	~		deployed and tested		CU
Fins w/TiN on Al	~				SLAC
Triangular Grooves on Cu				~	CU, KEK, LBNL, SLAC
Triangular Grooves w/TiN on Al			~		CU, SLAC
Triangular Grooves w/TiN on Cu				1/2011	CU, KEK, LBNL, SLAC
Clearing Electrode					CU, KEK, LBNL, SLAC

- TiN Wiggler moved to CESR arc to study in different photon environment
- In-situ SEY chamber removed
 - Measurement arm developed vacuum leak at brazed joint

- Reduced running time due to funding situation
 - Planning for
 - 2 approx. half-day setup periods
 - 10 half-day (12 hr) experimental shifts
 - Allow for 4 contingency shifts
 - Key thrusts
 - Understand feedback issue (identified in December run) affecting low emittance multi-bunch studies
 - Instrumentation
 - Upgraded positron xBSM with new 4ns bunch-spacing digitizer and improved preamplifier
 - EC Build-Up
 - Characterize newly deployed vacuum chambers
 - Higher current wiggler ramp studies
 - Bunch-spacing studies for EC-buildup
 - Time-resolved EC build-up measurements
 - Pursue questions that have arisen in study of EC instabilities and emittance growth

CESRTA Phase I Report

- Key 2011 deliverable is the CESRTA Phase I Report
 - ILC Global Design Effort and DOE Milestone
- Organizational Issues
 - In order to smoothly assemble such a large document, we will work in LaTeX
 - Document to be maintained in our SVN repository
 - Presently populating a page on the CESRTA Wiki with guidance/instructions for authors

https://wiki.lepp.cornell.edu/ilc/bin/view/Public/CesrTA/CesrTAPhaselReport

Target Schedule

- Mid-April: Target for initial submissions
- May 16, 2011: Edited document available for final collaboration review.
- June 1, 2011: Final day for submitting comments.
- We then plan to release the "preprint" to the ILC PMs during June

Coordination of sections

- Overall coordinators for each chapter
- Section coordinators for each x.y section
- Section coordinators will be contacting individuals for specific contributions ASAP