Calibration issues for the CALICE 1m3 AHCAL

ALCPG11 - Linear Collider Workshop of the Americas Eugene, Oregon, USA 2011/3/22

Jaroslav Zalesak

Institute of Physics, Prague

- Equalization of the cell response in AHCAL
- MIP & Gain & Saturation of SiPMs
- Validation of the AHCAL calibration

Calibration chain: ADC to MIP

AHCAL signal chain:

Particle shower \rightarrow MIPs \rightarrow scintillator \rightarrow photons (UV)

 \rightarrow SiPM (non-linear) \rightarrow photo-electrons \rightarrow amplification \rightarrow electronics

Calibration:

convert detector signal into number of MIPs deposited by particle traversing the tile & correct for non linear response of SiPM & scale vis. MIP to tot. dep. energy in GeV

What do we need:

Lightyield in [pix/MIP]:

- MIP amplitude in ADC bins ... C_i^{MIP}
- SiPM gain: (CalibMode) ADC bins converts to pixel ... G_{pix}
- Electronics Intercalibration: between PM/CM mode ... Ic
- SiPM response function: corrects the non-linear response of the SiPM ... f_{sat}(A_i[pix])

$$f_{sat}(A_i[pix]) = f_{sat}\left(\frac{A_i[ADC]}{I_C} \times G_{pix}\right)$$

 $E_{i}[MP] = \frac{A_{i}[ALC]}{C^{MP}} \times f_{sct}(A_{i}[pix])$

Cell response equalization with MIP

Using muon signal

Module:29_chip:0_channel:1

Using pion shower

select MIP stubs using the high granularity of the HCAL

Luminosity requirement for in-situ calibration with MIP stabs from jets (ILC detector)

	Luminosity at 91 ${\rm GeV}$	Luminosity at 500 GeV
layer-module to 3% to layer 20	1 pb^{-1}	$1.8 { m ~fb^{-1}}$
layer-module to 3% to layer 48	10 pb^{-1}	$20 {\rm ~fb^{-1}}$
HBU to 3% to layer 20	$20 {\rm \ pb^{-1}}$	$36 {\rm ~fb^{-1}}$

more statistics obtained from $Z_0 \rightarrow \mu\mu$ events

MIP calibration

Calibration obtained at CERN with ~2 M muon events (80 GeV) - broad muon beam covering the whole $1x1 \text{ m}^2$ calorimeter face - minimum 500 events required for a good fit (G \otimes L) in one cell

MIP detection efficiency above0.5*MIP threshold ~ 93%

Signal to noise ratio ~ 10

> MIP error uncertainty (coming mainly from fits) is 2% of energy scale

Importance of monitoring/calibration

SiPM response is non-linear

Jaroslav Zalesak, Institute of Physics, Prague

Redundant calibration system delivers:

- Low intensity light for SiPM Gain calibration
- High intensity of light for saturation monitoring
- Medium intensity light for electronics intercalibration AHCAL layer (1CMB=12LEDs) = 216 tiles

Light intensity for 7608 channels within factor 2
 > 94% calibration efficiency on full calorimeter

ALCPG11 in Eugene, Mar 22, 2011

SiPM gain calibration

- Gain extracted from a multi-Gaussian fit to LED calibration data
 ~15 min data taking necessary for one gain scan
- Repeated ~every 6-8h during data taking

Efficiency (#ch. calibrated): CERN 96%, FNAL 97% → Mainly quality of LED system

> Uncertainty on Gain determination (mainly due to fit) is ~2% for good cells

ASIC mode inter-calibration

- values for 94% of all channels
- ≈ 4% of channels failed due to problems with the CMB hardware
- ≈ 2% dead channels
- method efficiency near 100%
- stability: 2% RMS over data taking period
 reduced to <0.5 % in later analysis

IC coefficient uncertainty is better than 1 %

Temperature and voltage dependence

Jaroslav Zalesak, Institute of Physics, Prague

- SiPMs (operated in Geiger mode):
 Gain G, Geiger efficiency ε
- $G, \varepsilon \propto (U_{bias} U_{bd})$ O(2%/100mV)
- $U_{bd} \rightarrow T \propto G, \varepsilon \propto (-T)$ -1.7%/K
- Muons response $A_{MIP} \propto \varepsilon \times G$) -3.7%/K

Compensation of Temperature Changes (HV Adjustment)

compensate the effect of T increase (increase of U_{bd}) by increasing the bias voltage (increase of ΔU) \rightarrow Price to pay: increase of noise above threshold (for fix threshold)

Temperature variations at TB

- gradient along the calorimeter length
- gradient across a module (<0.5 deg)</p>

Important point for a ILC detector:

- > cell equalization (with muon) cannot be repeated in situ
- > test beam calibration can be ported to the ILC detector
- > what about correction of long term T fluctuation (if any)?

MIP & Gain T&V dependence

Different methods to determine dA^{MIP} / dT:

Jaroslav Zalesak, Institute of Physics, Prague

Correction to MIP calibration set

Comparison between T/U calibrated FNAL and reference CERN sample

 Remaining 4% offset consistent with different muon beam energies (32 GeV at FNAL, 80 GeV at CERN)

```
Results: shift = 4.2%, spread = 7.8%
```

Saturation curves

Saturation curves for single SiPM should be universal...

BUT:

Disagreement between ITEP (bare SiPM) and in-situ (on-tile) measurement

Not all pixels illuminated by WLS light!
 Ratio of geometrical area it is expected that only 78.5 % of the SiPM area (square) is illuminated by the WLF fiber
 different number of dead pixels in each SiPM could change this number

→ determination saturation factor for each channel separately

- extract saturation factor for all channels
- apply calibration to pixels & temp corrections
- averaged over all runs \rightarrow consistent results?

Total number of pixels in a SiPM = 1156

Saturation: temperature correction

Temperature correction works well

 Efficiency 97% in TB data period
 75% (5524 of 7406) channels vary by less 3% of RMS over all data taking time

Saturation: FNAL versus CERN

Good correlation between saturation point extracted from CERN and FNAL data

Both data sets shows average effective number of pixels at a level of 80% of phys. number (w/ RMS ~ 7%)

Distribution (lab vs in-situ) N_{mount}/N_{bare} gives 80.5%, with RMS 9%

FNAL-CERN Asymmetry

- Temperature correction cancels the difference in mean.
- The signal does not degrade (small error of T correction factor)
- But still long tails with wrong fit either at CERN or FNAL or both.

Current status of calibration

Green band indicates variations of the fit result due to calibration uncertainties on both the Gain and saturation scales.

- Non-linearity ~3% @ 50 GeV
- Remaining non-linearity for > 40GeV electron shower still under investigation
- > In hadronic showers smaller energy density (at the same particle E)
 - → non-linearity effects are less relevant for hadrons

Conclusion

- We have operated a calorimeter with ~7600 cells read out by SiPM during 4 years test beam campaigns (next one 'W' in progress)
- > The equalization of the cell response is done at the MIP scale
 - light yield ~13 pixels / mip, S/N ~ 10
- > SiPM response measured for each device:
 - Lower saturation point measured after mounting SiPM on tile
 - Both data sets FNAL & CERN give consistent results: ~83% of pixels illuminated by WLS fiber light
- Transportation of the calibration due to changing temperature and voltage works well a can be used for whole detector
- Calibration procedure validated with EM data

Saturation: mounted/bare

Effect of channel-by-channel corrections on EM analysis

global rescaling factor

X single cell saturation

➢ single-cell calibration does not improve the linearity w.r.t. a common rescaling factor → simplifies calibration chain of high-multi channel calor.

Impact on hadron analysis

~5% shift between CERN reference and transported samples
 → Corrected by the in-situ layer-by-layer calibration using MIP stubs from pion showers

After transport of calibration consistent results within analysis uncertainties