T3B - Time Structure of Hadronic Showers in the CALICE Tungsten HCAL

Frank Simon MPI for Physics & Excellence Cluster 'Universe' Munich, Germany

Linear Collider Workshop of the Americas March 2011, Eugene, OR, USA

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Outline

- Hadron Calorimetry at CLIC: Competing Requirements
- The Time Structure of Hadronic Showers
- First measurements in a Tungsten HCAL
 - The T3B Setup
 - First Results
- Summary & Outlook

Hadron Calorimetry at CLIC

- The key CLIC feature: High Energy!
 - 3 TeV energy means in principle up to 1.5 TeV jets

Shower containment and leakage is a crucial issue

- A (very) deep hadron calorimeter is needed
- Solution Use compact absorbers to limit the detector radius: Tungsten a natural choice

Hadron Calorimetry at CLIC

- The key CLIC feature: High Energy!
 - 3 TeV energy means in principle up to 1.5 TeV jets

Shower containment and leakage is a crucial issue

- \Rightarrow A (very) deep hadron calorimeter is needed
- Use compact absorbers to limit the detector radius: Tungsten a natural choice
- Key challenge (linked to high energy and machine-specific issues): Background
 - $\gamma\gamma \rightarrow$ hadrons substantial:
 - ~ 12 hadrons/bunch crossing in the barrel region (4 GeV / bunch crossing) [40 hadrons / 40 GeV barrel + endcap]
 - extreme bunch crossing rate: every 0.5 ns
- \Rightarrow Very good time resolution in all detectors important to limit impact of background!

T3B - Time Structure of Showers in Tungsten ALCPG11, Eugene, OR

• Hadronic showers have a rich substructure:

ТШП

Frank Simon (frank.simon@universe-cluster.de)

4

ЪШ

Frank Simon (frank.simon@universe-cluster.de)

Importance of delayed component strongly depends on target nucleus

Sensitivity to time structure depends on the choice of active medium

Excellence Cluster

 \Rightarrow Sensitivity to time structure depends on the choice of active medium

Excellence Cluster

- The CALICE Scintillator-Tungsten HCAL A CLIC physics prototype
 - 30 layers with 10 mm Tungsten (93% W, 5% Ni, 2% Cu, density 17.6 g/cm³) absorber
 - Active elements from CALICE AHCAL: 5 mm thick scintillator tiles, read out by SiPMs (no time information available)

- The CALICE Scintillator-Tungsten HCAL A CLIC physics prototype
 - 30 layers with 10 mm Tungsten (93% W, 5% Ni, 2% Cu, density 17.6 g/cm³) absorber
 - Active elements from CALICE AHCAL: 5 mm thick scintillator tiles, read out by SiPMs (no time information available)

For details see the talk by Dominik Dannheim yesterday

- The CALICE Scintillator-Tungsten HCAL A CLIC physics prototype
 - 30 layers with 10 mm Tungsten (93% W, 5% Ni, 2% Cu, density 17.6 g/cm³) absorber
 - Active elements from CALICE AHCAL: 5 mm thick scintillator tiles, read out by SiPMs (no time information available)
 - For details see the talk by Dominik Dannheim yesterday
- T3B (Tungsten Timing Test Beam)
 - Goal: Measure the time structure of the signal within hadronic showers in a Tungsten calorimeter with scintillator readout
 - Use a (very) small number of scintillator cells, read those out with high time resolution
 - Record signal over long time window:
 - $\sim 2~\mu s$ to sample the full shower development

- The CALICE Scintillator-Tungsten HCAL A CLIC physics prototype
 - 30 layers with 10 mm Tungsten (93% W, 5% Ni, 2% Cu, density 17.6 g/cm³) absorber
 - Active elements from CALICE AHCAL: 5 mm thick scintillator tiles, read out by SiPMs (no time information available)
 - For details see the talk by Dominik Dannheim yesterday
- T3B (Tungsten Timing Test Beam)
 - Goal: Measure the time structure of the signal within hadronic showers in a Tungsten calorimeter with scintillator readout
 - Use a (very) small number of scintillator cells, read those out with high time resolution
 - Record signal over long time window:
 - $\sim 2 \ \mu s$ to sample the full shower development

First information on time structure, possibility for comparisons to Geant4, but: no complete "4D" shower reconstruction!

Excellen

T3B Technology: Scintillators and Photon Sensors

- Important features for timing measurement:
 - Fast response (good time resolution!)
 - Large signal (allows detection of small individual energy deposits)

Fiberless coupling of photon sensor to scintillator: Eliminate time constant of WLS

- Requires blue sensitive photon sensors
- Requires special shaping of coupling position to obtain uniform response over tile

~ x2 faster response without WLS

T3B - Time Structure of Showers in Tungsten ALCPG11, Eugene, OR

Frank Simon (frank.simon@universe-cluster.de)

ince Cluster

The T3B Setup

• 15 3 x 3 cm² scintillator cells, sampling the radial extent of the shower

beam axis through cell 0

T3B - Time Structure of Showers in Tungsten ALCPGII, Eugene, OR

The T3B Setup

• 15 3 x 3 cm² scintillator cells, sampling the radial extent of the shower

Stand-alone system:

- Installed downstream of CALICE WHCAL, depth ~ 4 λ
- Each cell read out with 1.25 GS oscilloscope, 2.4
 µs sampling time per event
- Calibration triggers on dark noise between spills
 Synchronization with CALICE
- Triggered by CALICE trigger common analysis possible in the future

Data Analysis - Technique

- For each channel, a complete waveform with 3000 samples (800 ps /sample) is saved
- Waveform decomposed into individual photon signals, using averaged 1 p.e. signals
 - Average 1 p.e. signal taken from calibration runs between spills, refreshed every 5 minutes: Continuous automatic gain calibration

Simulations

- Geant 4.9.3.p01, Simplified simulation setup:
 - 31 layer HCAL, with 1 cm W + 1 mm Steel absorber
 - CALICE AHCAL cassette (2 x 2 mm Steel, 5 mm scintillator + PCB, cables, air)
 - Use T3B as the last layer of the setup
- Simulation of the time structure:
 - record the time and energy deposit of each Geant4 step in the T3B scintillator volume
 - bin in 800 ps time bins, convert to number of photons according to the energy in the bin
 - smear the time distribution of the photons according to observed time distribution of muon signals
 - ad-hoc fit with a Landau: $\sigma \sim 1.3~\text{ns}$

Excellence Cluste

First Results - Muons

- Energy of muons reconstructed in the central T3B tile
 - Full reconstruction with waveform decomposition
 - Used to calibrate the response for tile 0, consistent result for tile 1 only small cell-to-cell variation expected

• Two integration times: Short time window rejects a significant fraction of SiPM afterpulses

T3B - Time Structure of Showers in Tungsten ALCPGII, Eugene, OR

First Results - Muon Timing

- Present analysis: determining the Time of First Hit
 - minimum of 8 p.e. (~ 0.4 MIP) within 9.6 ns

Time of First Hit for Muons:

- Response to instantaneous energy deposit
- Time resolution (including trigger): ~ 800 ps
- Consistent with simulations including time smearing

First Results - Muon Timing

- Present analysis: determining the Time of First Hit
 - minimum of 8 p.e. (~ 0.4 MIP) within 9.6 ns

ALICE T3B Preliminary

Time^COF IF 573 PIMUROS[®] Muons: averaged muon response • Response to instantaneous

- energy deposit
- Time resolution (including trigger): ~ 800 ps
- Consistent with simulations including time smearing

310 320 330 340 350 Time of 1pe Hit [ns]

11 Excellence Cluste

First Results - Pion Data

- Data taken in CALICE WHCAL Testbeam at CERN PS
 - Current analysis: Highest energy 10 GeV π^-
 - Time of First Hit

T3B - Time Structure of Showers in Tungsten ALCPG11, Eugene, OR

Time of First Hit in Simulations

- Simulations using smeared photon distributions
- Same analysis procedure as real data
- Two physics lists:
 - QGSP_BERT: LHC standard, used for CLIC detector studies
 - QGSP_BERT_HP: Variant with high precision neutron tracking

ALCPG11, Eugene, OR

Data & Simulations - First Results

- QGSP_BERT shows a pronounced tail of late energy depositions
- Data agrees better with QGSP_BERT_HP Reduced activity beyond 20 ns

Data & Simulations - First Results

Compact Comparison:

Mean Time of First Hit

 calculated in a time window of 200 ns (-10 ns to 190 ns from maximum in tile 0)

- Data consistently described by QGSP_BERT_HP
 - QGSP_BERT deviates strongly

Data & Simulations - First Results

Compact Comparison:

Mean Time of First Hit

 calculated in a time window of 200 ns (-10 ns to 190 ns from maximum in tile 0)

15

Excellence Cluste

- Data consistently described by QGSP_BERT_HP
 - QGSP_BERT deviates strongly
- High precision neutron tracking or other means to suppress excessive
 late energy depositions necessary to describe observed time structure in T3B

Summary & Outlook

- Time resolution is important at CLIC: High hadron background combined with 2 GHz bunch crossing frequency
- Hadronic showers are not instantaneous: Limits to the time resolution of the hadronic calorimeters
- T3B provides first measurements of the time structure of the response of a scintillator-tungsten HCAL 10 GeV pions at the CERN PS
- Moderate amount of late-starting hits observed: Consistent with Geant4 simulations using QGSP_BERT_HP
- Further Plans: Extension of analysis to full time profile in T3B, correlation with CALICE WHCAL to obtain longitudinal information
- Event-to-event measurements of the time structure require a full "4D" calorimeter: Time resolution in every calorimeter cell
 - Possible with the next generation of CALICE AHCAL electronics, currently in production

Frank Simon (frank.simon@universe-cluster.de)

T3B Program: Planned Measurements - Global Timing

- Based on simulations of 30 layer WHCAL, using Geant4.8.0 & QGSP_BERT_HP
 - 200k negative pion events simulated
 - No digitization in simulation: Raw time information from Geant4, no inclusion of response of scintillator, photo sensor, DAQ (yet)
- With T3B behind the HCAL:
 - expect 90% (95%) of the complete energy within ~10 (20) ns

18 Excellence Clust

- Determine shower start point using full WHCAL data: Pin-point T3B location within the shower event by event
 - ▶ Allows the measurement of average time profiles over the full shower

Average time of first hit (for cells which reach an energy > 0.3 MIP in the event)

- Determine shower start point using full WHCAL data: Pin-point T3B location within the shower event by event
 - ▶ Allows the measurement of average time profiles over the full shower

19 Excellen

• Analogous: Mean time of all energy deposits, relative to the shower start

Shower core characterized by prompt energy deposits, delayed deposits contribute significantly ~ 10 cm and more away from the shower axis

• Analogous: Mean time of all energy deposits, relative to the shower start

Shower core characterized by prompt energy deposits, delayed deposits contribute significantly ~ 10 cm and more away from the shower axis

In general:T3B will look at space-resolved averages of time distributions, event by event studies need time resolution in all calorimeter cells

A Look at Geant4: Time Distribution

- Geant4 simulation of a 30 layer Scintillator-W calorimeter (QGSP_BERT)
 - Time distribution of energy deposits (no detector effects!)

T3B - Time Structure of Showers in Tungsten ALCPGII, Eugene, OR

21 Exceller

A Look at Geant4: Time Distribution

- Geant4 simulation of a 30 layer Scintillator-W calorimeter (QGSP_BERT)
 - Time distribution of energy deposits (no detector effects!)

A Look at Geant4: Time Distribution

- Geant4 simulation of a 30 layer Scintillator-W calorimeter (QGSP_BERT)
 - Time distribution of energy deposits (no detector effects!)

T3B Technology: Scintillators and Photon Sensors

- Important features for timing measurement:
 - Fast response (good time resolution!)
 - Large signal (allows detection of small individual energy deposits)

Choice of photon sensor: Number of pixels

- Compromise between amplitude and dynamic range
- T3B will sit behind 4 λ of Tungsten: Extremely high signals very rare, main interest in small energy deposits

T3B Technology: Scintillators and Photon Sensors

- Important features for timing measurement:
 - Fast response (good time resolution!)
 - Large signal (allows detection of small individual energy deposits)

Choice of photon sensor: Number of pixels

- Compromise between amplitude and dynamic range
- T3B will sit behind 4 λ of Tungsten: Extremely high signals very rare, main interest in small energy deposits

For T3B: Hamamatsu MPPC50C

- ▶ 400 pixels, with a size of 50 x 50 μ m²
- ▶ For a ⁹⁰Sr source: Mean signal height ~ 30 p.e.
- ▶ For muons in beam (real MIPs): ~ 26 p.e., consistent with ⁹⁰Sr observations

T3B Technology: DAQ

- Key requirements:
 - Fast sampling to allow for single photon resolution: ~ I GHz or more
 - Long acquisition window per event: 2 µs or more
 - Fast trigger rate: faster than the CALICE HCAL, > a few kHz

T3B Technology: DAQ

- Key requirements:
 - Fast sampling to allow for single photon resolution: ~ I GHz or more
 - Long acquisition window per event: 2 μs or more
 - Fast trigger rate: faster than the CALICE HCAL, > a few kHz
- Adopted solution for T3B: PicoScope 6403
 - 1.25 GHz sampling for 4 channels per unit
 - I GB buffer memory (shared between channels)
 - Burst trigger mode: Maximum rate determined by window length:
 ~ 500 kHz for 2µs acquisition window
 - 8 bit vertical resolution
 - Control & Readout via USB

