

Recent results on laser remelting to repair pits

Alexander Dzyuba, Evgeny Toropov

FermiLab

2011

• Why local melting?

- repair weld defects without bulk removal

- this might uncover new defects
- feasibility shown on single cells, being adapted to 9-cells now

Technique

basic elementssensitive to parameters: power, cover gas, focus, alignment...

• Results

- oxidation
- geometrical re-construction of the defect
- microstructure

State of the art: defects, quenches

1 of ~50 welds is limited by quench at a single defect

<u>1 of every <mark>6</mark> cavities is</u> limited by a weld defect

Implication: Repair by either local grinding (KEK technique) or local re-melting

36 MV/m \rightarrow Melt \rightarrow 50um EP + 120^o C \rightarrow 39 MV/m

- Mingqi Ge and Genfa Wu demonstrated proof of principle on single-cell
- Melted spot did not reduce gradient or Q appreciably
 - Do we need post processing?
 - Are the parameters optimum?
- 9-cell apparatus built

🛟 Fermilab

SRF Materials Group

- 9-cell melting applied to cavity limited to 12 MV/m by a pit
 - Waiting for final EP now

Alexander Dzyuba

Ge and Wu setup

RPER) 2

Complex articulation of nozzle for cover gas arranged around mirror and lens for laser focus

- High temperature required
 - Promotes oxidation, which adversely affects superconductivity
 (Do we need post-processing? What kind?)

Ring-like oxide layer

O Ka1

Based on EDX peak heights, thickness is only a few μm (not 50 μm)

Low cover gas flow

🛟 Fermilab

SRF Materials Group

High cover gas flow

Scientific challenges & results

- Risk Not enough improvement in topography after melting (Are the parameters optimum?)
 - "Impact crater" at high power
 - Flatter but more oxidized for multiple low power pulses
 - Can a perfectly flat surface be obtained starting from a defect?

Scientific challenges & results

- Do we need postprocessing? What kind?
 - Some is ok, too much means there is no benefit to overall process
 - Laser melted spot has features like those near a weld (e.g. HAZ)
 - Will this adversely affect postprocessing?

Evidence for stress along • boundaries

- 9-cell test of initial laser melting parameters (Ge and Wu) is underway
- Pathway toward further optimization was demonstrated
 - Melting is rather sensitive to power, cover gas pressure, focal distance
 - Solution to the "impact crater" problem by multiple low-power shots
 - Oxidation occurs, but was found to be rather thin
 - A few µm post process, e.g. HF etch, could be appropriate
 - The melted areas have microstructures like welds
 - Resolidified and recrystallized grains, heat affected zones
 - Dislocations can concentrated in boundaries stress

• Future work:

- Obtain the exact depth concentration of oxygen and hydrogen (SIMS)
- Repair low-field quench in 1-cell cavity with new parameters and new post-processing

Thanks to:

C. Thompson, D.Hicks, D. Burk, R. Schuessler, A. Romanenko and L. Cooley

LR system has been created by:

G. Wu (ANL) and M. Ge (Cornell)

Thank you for your attention