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“New technologies” means they are well settled in other fields but their usage in 
HEP is very recent/new.

• Structural monitoring of silicon tracker systems:

 Using IR-transparent microstrips for tracker alignment → not new
 Method to improve their IR-transparency → new

• Struct.&environmental monitoring of tracker & vertex systems:

 Using integrated fiber optic sensors (FOS) as monitors → not new
 Embedding FOS in the tracking sensor itself → new
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Index

• Hardware tracker alignment using transparent microstrip detectors
 Simulation
 Prototype production report

• Structural monitoring of vtx and trackers using Fiber Optical Sensors (FOS)
 Introduction to FOS
 Current R&D on FOS
 Irradiation of FOS
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Structural monitoring of  silicon 
tracker systems



  

Microstrips as semitransparent light detectors

• Laser tracks can be used by a hardware system to align the tracker
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• Goal: improve transmittance to infrared light of microstrip detectors without 
altering the standard production process

• First implemented by AMS I, then AMS II and CMS. 
Envisaged for sLHC and ILD's FTD
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• R&D done at IFCA+CNM (Spain), then know-how transfer to larger producer



  

• Generic sensor to optimize: 
 50 µm pitch sensors, both with/out intermediate strips
 Implant width=12.5-17,5 µm, Strip width 3-15 µm
 T
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• Optimization of detector for maximum transmittance (%T) requires simulation 
of diffraction by strips
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• Simulation done. First (and only) optical 
simulation in HEP of microstrips to include 
this level of detail 

Optical simulation of microstrips

• Validated against published data, 
measurements of simple gratings... 
and against the own sensors we are 
trying to optimize
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Main conclusions from full simulation (I)
See for instance: Eudet-Memo-2009-23

— Strip width increase (mirror effect):
→ increases reflectance (1st order), reduces transmittance (2nd order).

— Pitch reduction (=closer strips):
 → decreases transmittance (1st order effect), increases reflectance (2nd order).

— Strips having metal or not (i.e. intermediate strips) behave as a diffraction grating. 
Busier pitch ⇒  lower transmittance

25   µm 50 µm

T( ) < T( )
(Below this line, both types of sensors are the same)
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— Top and bottom nitride layers behave as an AntiReflection Coating (ARC)

Si
n+ implant

SiO2 (FO)
SiO2 (pass.)
Si3N4 (pass.)

T=T(top,bottom passivation thickness)
Periodical ~ 250-300 nm

Main conclusions from full simulation (II)

— Even if T=T(9 thickness), we can optimize T
opt

=T(2 thickness)
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5+1 wafers done at CNM-Barcelona
12 multigeometry strip sensors/wafer+optical test structures+electrical test structures
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Structural and environmental monitoring of  
vertex (and tracker) systems



  

• Gratings can be used as “single wave reflectors” aka Bragg reflectors

Introduction to Fiber Grating Optical Sensors (I)
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• λ
B 

is sensitive to strain and T:

• Bragg reflectors can then be used as sensing elements in optical fibers

• Other quantities (humidity, %CO2, magnetic field,...) can be 
measured using coatings sensitive to these measurands. 
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• Gratings for different wavelengths can be recorded in the same fiber: 
measurand mapping capability
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• Optical fibers can be embedded in 
materials
We have then smart structures capable of self-
monitoring

Introduction to Fiber Grating Optical Sensors (II)
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• Light source and analyzer can be up to 
km away from the sensor itself
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• FOS are light-weight, miniaturised, flexible, inmune against em fields, HV. 
  They work in a wide range of T (4... 900 K)

• No copper and powering lines (much less noise picked-up & induced)

• These features match very well current and future silicon systems needs for:

 Real-time monitoring of environment variables (T, humidity, B field...)
 Real time structural monitoring: deformations, vibrations (push & pull 
     operation), movements.

Monitoring requirements for trackers and vtx systems
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Predecessors in HEP: 
Omega-like gauge

Strain FBG sensor 
on the tip

T compensating Ω

Residuals

Mechanical displacement: Original idea from the late BTeV vertex detector
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— Embedding of fibers into CF composites 
— Bonding of fibers to sensors
— Radiation resistance
— A displacement sensor based on FBG

IFCA: Current R&D activities with FOS
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• A possible application in HEP: 
embedding of FBG sensors in 
carbon fiber composite to 
monitor deformations and 
vibrations

• Currently working collaboration agreement between IFCA 
and Spanish Aerospace Agency (INTA) 

Embedding of fibers into CF composites 
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Design of micromechanical fixations for bonding of fibers to silicon sensors
Wafer with machined groove done at CNM-Barcelona



  

Rad-Hard  Qualification of FOS

• We need to proof radiation hardness of the sensor in the fiber and of the 
fiber embedded in hosting material (CF laminate)

• Irradiation campaign at  Spanish National 
Centre for Accelerators (CNA-CSIC)
• New Cyclotron facility (18MeV protons), 
here 15.5 MeV protons 
• 9 fibers, 3 different coatings, 2 different 
sensors irradiated
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New irradiation campaign

23
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BEAM DIRECTION

First campaign: ∆T=12C New fiber support for next irradiationcampaign
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● The first four mechanical dummies manufactured in INTA to 
evaluate manufacturing procedure ( 2 omega shape and 2 
S-shape) 

● They are going to be tested in an Universal Tension tester
 The Reaction / displacement curve 
 Compare results with FEA simulations.

Omega shape manufacture
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Conclusions

• We have presented some new solutions for hardware alignment problems

• Alignment of Si trackers will benefit of more transparent microstrip sensors
Minimal cost in production: tune thickness of top and bottom nitride

• Fiber Optical Sensors are proposed for structural and environmental monitoring 
of Si vtx+trackers:

  Well stablished technology in aeronautics and civil engineering
  Distributed and remote sensing, lightweight and noiseless
  Testing rad-hardness of different fiber coating materials
  Displacement prototypes under production
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BACKUP



  

Sensor 1
impl int1/2
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i15_m10: Implant 
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Wafer 3: Sequential deposition of Si3N4 (using measured thickness)
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Bottom Si3N4 T=T( top Si
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 thickness , bottom Si
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 thickness ) for the 12 sensors
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