Status of LHC Experiments

Prolay Kumar Mal University of Arizona (for ATLAS & CMS-collaborations)

ALCPG11 University of Oregon, Eugene, Oregon March 19-23, 2011

ATLAS and CMS Detectors Performances in 2010 pp data **Detector subsystems Object Reconstruction/Identification Tools** Highlights of 2010 Physics Analyses Electroweak & Top Physics Higgs Searches SUSY & New Physics Searches Very few analyses are chosen here □ Summary & Outlook

Compact Muon Solenoid

Prolay Kumar Mal

Luminosity for the pp collisions data

Prolay Kumar Mal

- Tri-level ATLAS Triggers
 - L1: Hardware based
 - L2 and HLT: Software
- Gradual evolution of the Trigger menu with the LHC luminosity increase
 - Recorded data @ 300 Hz in 2010
 - Performed quite efficiently in 2010

- CMS Triggers wide variety of triggers to support the CMS physics program.
- Recorded data @ 300 Hz in 2010 with highly efficient object selection.

Tracker Performance

- Momentum scale has been tested to per mille level using the classic resonances
 - K_s, K*, φ, Λ, Ω, Ξ, D, D* and J/Ψ
- Good performance of Inner Detectors an tracking/vertexing algorithm
- Material mapping in the Inner Detector volume has been reasonably understood; scope for further improvement.

ATLAS $J/\Psi \rightarrow \mu^+\mu^-$ Invariant mass vs muon η

Prolay Kumar Mal

ALCPG11, Eugene, Oregon, March 19-23, 2011

Calorimeter Performance

- Excellent linearity down to J/Ψ mass
- Calorimeter response of the single hadrons has been validated with 2010 collisions data.

ALCPG11, Eugene, Oregon, March 19-23, 2011

1.2 MC/DATA 1 0.8

p [GeV]

10

Calorimeter Performance

Jet Reconstruction & JES

ATLAS

- Calorimeter based jet reconstruction using energy calibrated topological clusters
- Jet Energy Scale (JES)
 - Initial corrections based on the simulation + Test Beam results.
 - Di-jet & γ+jets events for evaluation of systematic uncertainties
 - Future: In-situ calibration via Z⁰-Boson and top events with a goal to reach 1% precision

- Three different types for jets
 - Calorimeter only: "Calorimeter" jets
 - Calorimeter + Tracking: "Jet Plus Track" and "Particle-Flow" jets
- Jet Energy Scale with different precision
 - First calibrated using MC (tuned with Test Beam data)
 - "Residual" corrections using collisions data
 - di-jets events with relative η intercalibration; γ+jets events for absolute energy-scale corrections

Prolay Kumar Mal

Combined Muon Performance

- Muon Spectrometer (MS) together with the Inner Detectors (ID) are crucial for Muon identification
 - Combined muon momentum resolution is dominated by the ID measurements for tracks with p<50 GeV/c.
 - For high momenta tracks, ATLAS "MS-only" momentum resolution is compatible with the combined muon momentum resolution.
 - Checks for alignment, calibration, magnetic field and material description using Z⁰→µ⁺µ⁻ events

Prolay Kumar Mal

ALCPG11, Eugene, Oregon, March 19-23, 2011

Highlights from ATLAS & CMS Physics Results

Physics with W[±]/Z⁰ bosons

Physics with W[±]/Z⁰ bosons

- Measurement of W[±] (Z⁰) production cross-sections by CMS with 198 nb⁻¹ data
 - In good agreement with ATLAS measurements

Dibosons $-W^{\pm}/Z^{0}+\gamma$, $W^{+}W^{-}$

Top Quark

Prolay Kumar Mal

Top Quark

Higgs Searches

SM Higgs Production & Decay modes

- Standard Model Higgs Searches
 - High mass searches are dominated by H⁰→W⁺W⁻ and H⁰→Z⁰Z⁰ searches
 - Low mass searches in $H^0 \rightarrow \gamma \gamma$
- MSSM Higgs searches 5 physical Higgs bosons (h, A, H and H[±])
 - Neutral Higgs bosons (h/A/H≡Φ)
 - At large tanβ, enhancement of the Higgs coupling with the "down"-type quarks (e.g., b-quarks) over the SM; and hence the overall production cross section enhancement.
 - BR($\Phi \rightarrow \tau \tau$)~10% for large tan β

• $\Phi \rightarrow \tau_{had} \tau_{lep}$ searches have great potential ene, Oregon, March 19-23, 2011 18

SM Higgs Searches

Prolay Kumar Mal

MSSM Higgs Searches

Prolay Kumar Mal

ALCPG11, Eugene, Oregon, March 19-23, 2011

SM Higgs Search Prospects

- 2010 MC sensitivity studies for different LHC running scenarios
- **Additional channels**
 - Both CMS and ATLAS have great discovery or exclusion potentials for SM Higgs (a) 7 TeV
- **ATLAS & CMS combination would improve the** sensitivity further.

Search for Supersymmetry

No evidence of the SUSY signals in the early data yet

- Rich variety of search strategies to look for the first SUSY signals
 - Clean signatures: $jet+E_T^{miss}$, $\gamma\gamma+E_T^{miss}+jet$, multileptons, etc.
- Already exceeding the limits on SUSY from the Tevatron

experiments

If m_{squark}=m_{gluino}, m_{gluino}<775 GeV/c² (ATLAS) excluded at 95% CL

Limits on the signal cross section for General Gaugemediated (GGM) Supersymmetry between 0.3 and 1.1 pb at the 95% CL.

Prolay Kumar Mal

New Physics Searches

Prolay Kumar Mal

New Physics Searches

CMS: First Generation Scalar Leptoquark searches (eejj): m_{LQ} <384 GeV/c² excluded at 95% CL for β =1

ATLAS: Search for 4th Generation quarks m₀₄<270 GeV/c² excluded at 95% CL

Prolay Kumar Mal

- ATLAS and CMS experiments have been quite efficiently operational during 2010 LHC running. Detector calibration and performances have been tested and improved through the usage of collisions data.
- Both experiments have performed comprehensive set of SM measurements using the pp collisions data at $\sqrt{s}=7$ TeV.
 - Measurements are compatible with SM predictions and within the experiments.
- A significantly large number of physics analyses have been devoted to look for the new physics beyond the Standard Model (BSM), including Higgs bosons (both SM and BSM) and SUSY searches.
 - No evidence for new physics or Higgs bosons found in 2010 data. Exclusion limits have been set in various areas, already exceeding the current Tevatron limits.
- Further details about ATLAS/CMS physics analysis:
 - ATLAS: https://twiki.cern.ch/twiki/bin/view/AtlasPublic
 - CMS: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults
- Prospects for the Higgs, SUSY and BSM searches seem to be quite promising with 2011-12 LHC running. 2011 LHC running would accumulate at least 50 times larger dataset.

LHC has resumed its first pp collisions in 2011. Stay Tuned!

Extras

Missing Transverse Energy

- Many new physics signatures are characterized by the Missing Transverse Energies (E_T^{miss})
 - Calorimeter plays the crucial role for such reconstruction (sensitive to noise sources, dead cells etc.)
- ATLAS E_T^{Miss} (<300 GeV) calibration using a large statistics (15.2 million) of Minimum Bias (MB) events from pp collisions at √s= 7 TeV.
- ATLAS/CMS performance checks of E_T^{Miss} on MB and/or di-jet events from pp collisions at $\sqrt{s}=7$ TeV.

Prolay Kumar Mal

- The hadronic decay of τ-lepton is characterized by a narrow calorimeter cluster in association with a track or set of tracks
- Identification is based on cluster shapes and the matching variables between the tracks and the cluster
- Discrimination/Separation from QCD jets
 - ATLAS: cut based or multivariate methods (Maximum Likelihood, Boosted Decision Tree)
 - CMS has 4 different techniques : based on Particle Flow algorithms/multivariate techniques and cut based.

ATLAS discriminating variables for τ -identification

700

600

500

400

75

ATLAS Preliminary

/core

0.2 0.3 0.4

0.1

ALCPG11, Eugene, Oregon, March 19-23, 2011

0.5

0.6

0.7

0.8

0.1

Integrated Luminosity 244 nb

R<0.1

Data 2010 (\s = 7 TeV)

0

5

800

700

600

500E

400

300

200

Flavor tagging

Prolay Kumar Mal