Reconstruction of Strip-ScECAL

K. Kotera & T. Takeshita for ILD-scintillator ECAL ALCPG11 March 2011

ILD scECAL

- inner radius: 1.850m
- barrel: 4.900 m long
- 25 Layers
 - W absorber 3 mm thick
 - plastic scintillator
 - x 10⁷ channels
 - 5 mm wide
 - 45 mm long
 - 2 mm thick

• JER/ \sqrt{E} < 30% @ \sqrt{s} =91 GeV necessary.

Introduction

- ScECAL is aiming at "effective" 5 x 5 mm² granularity orthogonal directions of scintillator strips in alternative layers with dimension 5 x 45 mm²
- Possible problem: Ambiguity when multi-particles hit in a strip
- A special algorithm must be developed and its performance must be demonstrated
- "Strip-splitting method"
- A simple algorithm to distribute energy deposit in a strip into virtually splitted square cells.
- Energy deposit in the square cells are fed into PandoraPFA i.e. clustering algorithm in PandoraPFA is used.

- 1. Assume that n-th is an z-layer (fine segmentation in z direction), while n±1 layers are x-layers (fine segmentation in x direction).
- 2. Split n-th layer into virtual square cells.
- 3. Energy deposit in n-th layer
- 4. is distributed in virtual square cells according to the energy deposits in adjacent (n-1)th and (n+1)th layers.

Alve

- 1. Assume that n-th is an z-layer (fine segmentation in z direction), while n±1 layers are x-layers (fine segmentation in x direction).
- 2. Split in n-th layer into virtual square cells.
- 3. Energy deposit in n-th layer
- 4. is distributed in virtual square cells according to the energy deposits in adjacent (n-1)th and (n+1)th layers.
- 5. The position and energy of virtual square cells are fed into PandoraPFA.

- 1. Assume that n-th is an z-layer (fine segmentation in z direction), while n±1 layers are x-layers (fine segmentation in x direction).
- 2. Split each strip in n-th layer into virtual square cells.
- 3. Energy deposit in n-th layer strip
- is distributed in virtual square cells according to the energy deposits in adjacent (n-1)th and (n+1)th layers.
- 5. The position and energy of virtual square cells are fed into PandoraPFA.

- 1. Assume that n-th is an z-layer (fine segmentation in z direction), while n±1 layers are x-layers (fine segmentation in x direction).
- 2. Split each strip in n-th layer into virtual square cells.
- 3. Energy deposit in n-th layer
- 4. is distributed in virtual square cells according to the energy deposits in adjacent (n-1)th and (n+1)th layers.
- 5. The position and energy of virtual square cells are fed into PandoraPFA.

- Assume that n-th is an z-layer (fine segmentation in z direction), while n±1 layers are x-layers (fine segmentation in x direction).
- 2. Split each strip in n-th layer into virtual square cells.
- **3.** Energy deposit in n-th layer
- 4. is distributed in virtual square cells according to the energy deposits in adjacent (n-1)th and (n+1)th layers.
- 5. The position and energy of virtual square cells are fed into PandoraPFA.

Strip Splitting exam.

A typical event : 10GeV photon

Energy summed up to z direction (y-x plane)

Before Strip-Splitting

After Strip-Splitting

Position resolution : in z for 10 GeV photons

Position difference between reconstructed position and MC true ($z = z_{rec} - z_{MC}$) at the ILD ECAL surface for 10 GeV photons with incident polar angles approximately 90°.

For 45 mm x 5 mm strips:

colored: z distributions of energy-weighted mean position without the strip-splitting method

Black: z distribution of reconstructed PFO with strip-splitting method

Systematic shift is removed by the stripsplitting method.

π^{0} mass and π^{0} recon.efficiency vs. π^{0} energy

- Reconstructed π^0 mass using strip-Splitting method looks reasonable.
- Efficiency degrades with higher energy.
- Sc5x5squareECAL has reasonable efficiency > This does not explain the difference of JER between SiECAL and ScECAL
- Need tune photon clustering in PandoraPFA

Length dependence of JER 45 GeV with realistic generator

Realistic simulation (generator) -intrinsic strip shape -not needed to merge square cells in generator(no doubt to cheat square information) -MPPC dead volume -reflector dead volume -PCB boad -copper radiator ... StripSplitting method works well -different of JER between SiECAL and ScECAL remains 14

Length dependence of JER 45 GeV after tuned by author of PandoraPFA

 PandoraPFA is tuned
Sc45x5mm²StripECAL achieves to have JER/ √E less than 30%.

Jet energy resolution vs. scintillator strip length at higher energy

-PandoraPFA is NOT tuned

Even at $\sqrt{s} = 500$ GeV, 45 mm x 5 mm ScECAL shows similar performance to that of 5 mm x 5 mm square tile ScECAL.

Jet energy resolution vs. jet energy

-PandoraPFA is NOT tuned for scecal

The tendency is similar to that of SiECAL in LOI

Planed layer structures are different than each other of ScECAL and SiECAL: SiECAL has fine layers 1 -20th layers

Similar layer structure for ScECAL was tested ▶ no effect

Difference of JER between ScECAL and SiEAL can be reduced by tuning

Summary

- ScECAL employs Scintillator strip technology to reduce the number of channels
- We need to develop special algorithm for Sc_Strip_ECAL.
- Strip-Splitting method was devised.
- Strip-Splitting method seems promising: up to $\sqrt{s} = 500$ GeV, ScECAL with 45x5 mm scintillator strip shows the similar performance to that 5 x 5 mm scintillator ECAL has.
- Sc45x5mm²ECAL achieved JER/ $\sqrt{E} < 30\%$ for $\sqrt{s} = 91$ GeV with more realistic simulation than previous version.
- Difference of performance between SiECAL and ScECAL should be removed with fine tuning of PandoraPFA.

back up

Two photon clusters in SiEcal and ScStirpEcal with Splitting method

Radius of 10 GeV photon in ECAL

π^{0} mass and π^{0} recon.efficiency vs. π^{0} energy

π^{0} mass and π^{0} recon.efficiency vs. π^{0} energy

Energy resolution of 10 GeV photon in various conditions

