SlicPandora

Norman Graf (SLAC) ALCPG11, Eugene March 21, 2011

slicPandora

- Frontend to the PandoraPFANew project.
 - LCIO binding, Geometry format, Sampling Fractions
- Uses geometry XML file generated by GeomConverter from compact detector.
- Reads input LCIO file with simulated events, tracks, and track states.
- Outputs LCIO file with Reconstructed Particles.
- Uses standard XML configuration file for PandoraPFA algorithm settings.
 - Pandora PFA (M. Thomson, J. Marshall)
 - slicPandora (N. Graf, J. McCormick, P. Speckmayer, C. Grefe, M. Stanitzki, J. Strube)

Workflow

- Generate LCIO events using slic and detector of your choice.
- Run SLIC output through LCSim tracking to generate Track and Track State collections.
- Take LCSim LCIO output and run in slicPandora to generate PFOs.
- Take LCSim LCIO output and run in uipfa to generate PFOs.
- Use LCIO analysis tool of your choice to work with PFOs (JAS3, ROOT, etc.).

Same

Events

slicPandora as analysis tool

- Same simulated Events can be analyzed using uipfa or slicPandora
 - study effect of algorithms/code on identical input
- Same stdhep input Events can be analyzed in different detectors
 - same input events can be processed through different detectors
 - compare digital to analog HCal with identical code

Calorimeter Calibration

- The Icsim-cal-calib package is used to generate sampling fractions from single particle data.
 - Range of single particle types and energies simulated in slic.
 - Events are analyzed in Icsim using simple fixed-cone clustering algorithm to derive sampling fractions.

Same events are run in slicPandora and fit again.

- PandoraPFA uses different clustering algorithm, so sampling fractions must be refitted to match final cluster energies.
- Final sampling fractions put into CalorimeterCalibration.properties file.

Optimization Data Sets

- Single μ[±], γ, K⁰_L, at fixed angles and energies for sampling fraction determination.
- Single particles (as above, plus e[±], π[±], K[±], p[±],...) at variable angles and energies to study clustering and tracking efficiency and resolution.
- Simple resonances (π⁰, η, ρ[±]) to study efficiency and resolution of two-particle states.
- Single quarks at fixed energies to study jet energy resolution (u,d,s).
- Single Z⁰ at fixed energies to study dijet mass resolution.

Single u quark events sidloi3 slicPandora PandoraPFA RMS90.Result{rms=2:0607772141109515 mean=49.84804765387926} PandoraPFA RMS90.Result{rms=9.912391306373149 mean=248.22219379774742}

PandoraPFA RMS90.Result{rms=3.849116759972938 mean=100.31203339518126}

UIPFA RMS90.Result{rms=2.368183716488864 mean=49.36766548369459}

JIPFA RM590.Result{rms=10.682481998693046 mean=247.3794150439412}

clic_sid_cdr pandora

CLiC PandoraPFA RMS90.Result{rms=1.73406239...

CLiC PandoraPFA RMS90.Result{rms=9.04880042...

CLiC PandoraPFA RMS90.Result{rms=3.26997730...

CLiC PandoraPFA RMS90.Result{rms=17.2546253...

Norman Graf

single u quark rms90

Norman Graf

single u quark rms90/mean90 in %

Dijet Performance

- light quark dijet events at fixed center-of-mass energies
- uds91, uds200, uds360, uds500
- Plot event energy, simple sum of energies of ReconstructedParticles

uds dijet Reconstruction Times

Norman Graf

sidloi3 slicPandora event energy sum

uds91 sidloi3 pandora eSum with cut (50<eSum) && (eSum<130...

uds200 sidloi3 pandora eSum with cut (100<eSum) && (eSum<3...

uds360 sidloi3 pandora eSum with cut (200<eSum) && (eSum<5...

uds500 sidloi3 pandora eSum with cut (300<eSum) && (eSum<7...

clic_sid_cdr slicPandora event energy sum

uds91 clic_sid_cdr pandora eSum with cut (50<eSum) && (eSum< ...

uds360 clic_sid_cdr pandora eSum with cut (200<eSum) && (eSu...

uds200 clic_sid_cdr pandora eSum with cut (100<eSum) && (eSu...

uds500 clic_sid_cdr pandora eSum with cut (300<eSum) && (eSu...

Norman Graf

sidloi3 & clic_sid_cdr event energy sum

uds Event Energy rms90/mean90 in %

Norman Graf

DBD Physics Benchmarking Preparations

- Final details of the common event sample for the DBD Physics Benchmarking exercise are still being resolved.
- Interim solution was to generate a small sample (~10k events) of each of the signal processes
 - obtain data about processing times to inform planning for production
 - \Box find bottlenecks in the sim \rightarrow reco \rightarrow analysis chain.
 - develop analysis strategies
 - optimize the detector?

DBD Events @ 1 TeV

Following Event Samples available

□ w33001	n1 n1 H	vvh
□ w33002	n1 n1 H	vvh
□ w33005	tΤΗ	tth
□ w33006	tΤΗ	tth
□ w33129	u D e1 N1	$W^+W^- \rightarrow jj + ev$
□ w33130	u D e1 N1	$W^+W^- \rightarrow jj + ev$
□ w33133	u D d U	$W^+W^- \rightarrow jj + jj$
□ w33134	u D d U	$W^+W^- \rightarrow jj + jj$

stdhep files generated by T. Barklow

Norman Graf

DBD Events @ 1 TeV

- Events processed through sidloi3 detector model.
- Icsim track reconstruction (including latest fix to endcap hits) has been run.
- SlicPandora has been run.
- Collections of ReconstructedParticles are available for analysis.
- Events have also been processed through clic_sid_cdr as an *ad hoc* detector optimization exercise (and perhaps inclusion in CDR/DBD?).
 - Using slac batch resources (N.Graf)
 - □ Will use Grid (Dirac?) for full production.

1TeV DBD Reconstruction Times

Norman Graf

Summary

- The technical interface between the lcsim simulation environment and the PandoraPFA reconstruction is essentially complete.
 - Geometry definition is automated
 - compact.xml → GeomConverter → detector_pandora.xml
 - Sampling fraction derivation is automated
 - Icsim-cal-calib + single particle generation
- Detector response of sidloi3 and clic_sid_cdr being studied, (detector optimization planned).
- Tuning & algorithm iteration ongoing.
 - expect to see improvements soon for use in SiD.
- Getting ready for CDR/DBD physics analyses.