

INSTITUTE FOR THEORETICAL PHYSICS, HEIDELBERG UNIVERSITY

WZ+jet, W γ +jet with anomalous couplings

What can the ILC learn from the LHC?

work with F. Campanario, M. Spannowsky, D. Zeppenfeld

Christoph Englert | 20.03.2010

Why anomalous couplings?

We still do not have a test of the Fermi-scale and beyond! But we may expect ...

$$\mathcal{L} = \mathcal{L}_{\text{SM w/o Higgs}} + \mathcal{L}_{[SU(2) \times U(1)/U(1)]} + \frac{1}{\Lambda_{UV}^2} \mathcal{L}^{(6)} + \dots$$

Try to measure \mathcal{L} in model-independent way: bottom-up phenomenology of $\mathcal{L}^{(n)}$

Focus on the SM extended by operators modifying the WWV gauge vertices

$$\begin{array}{c} \pi^{\mathrm{TC}}, \ \mathrm{SUSY}, \dots \\ & & \\ & & \\ & & \\ W^{\pm} A \left\{ Z \right\}^{\mu} \left(\rho \right) J_{A}^{\nu} \left(-\rho \right) \right\} = \left(\rho^{2} g^{\mu\nu} - \rho^{\mu} \rho^{\nu} \right) \left(\frac{F_{\pi}^{2}}{\rho^{2}} + \sum_{n} \frac{F_{n}^{2}}{\rho^{2} - m_{n}^{2}} \right) \\ & & \\$$

$$\begin{split} \mathcal{L}_{WW\gamma} &= -ie \big[W^{\dagger}_{\mu\nu} W^{\mu} A^{\nu} - W^{\dagger}_{\mu} A_{\nu} W^{\mu\nu} \\ &+ \kappa_{\gamma} (Q^2) W^{\dagger}_{\mu} W_{\nu} F^{\mu\nu} + \frac{\lambda_{\gamma} (Q^2)}{m_W^2} W^{\dagger}_{\lambda\mu} W^{\mu}_{\nu} F^{\nu\lambda} \big] \\ \mathcal{L}_{WWZ} &= -ie \cot \theta_{w} \left[g_1^Z (Q^2) \left(W^{\dagger}_{\mu\nu} W^{\mu} A^{\nu} - W^{\dagger}_{\mu} A_{\nu} W^{\mu\nu} \right) \\ &+ \kappa_Z (Q^2) W^{\dagger}_{\mu} W_{\nu} Z^{\mu\nu} + \frac{\lambda_Z (Q^2)}{m_W^2} W^{\dagger}_{\lambda\mu} W^{\mu}_{\nu} Z^{\nu\lambda} \big] \end{split}$$

[Hagiwara, Peccei, Zeppenfeld, Hikasa '87]

 $V_{\mu}^{-}(k_1)$ $\gamma_{\rho}(k_3), Z_{\rho}(k_3)$

modified production cross section, shape-deviations from the SM for large Q^2

LHC vs ILC: \sqrt{s} vs $\Delta \sigma$

How can we measure and constrain anomalous parameters?

indirect measurement via $e^+e^- \rightarrow W^+W^- + X$ at LEP & ILC

[ALEPH, DELPHI, L3, OPAL, arXiv:hep-ex/0612034]

Cross section is highly sensitive to gauge cancellations

2) clean handle on final state particles' helicities, polarized beams & $e^{\pm}\gamma$ option

systematics under excellent control, straightforward comparison of data against Monte Carlo, e.g. RACOONWW [Denner, Dittmaier, Roth, Wackeroth '01, '02]

Parameter	68% C.L.	95% C.L.
$g_1^{\rm Z}$	$0.991^{+0.022}_{-0.021}$	[0.949, 1.034]
κ_{γ}	$0.984^{+0.042}_{-0.047}$	[0.895, 1.069]
λ_{γ}	$-0.016^{+0.021}_{-0.023}$	[-0.059, 0.026]

[hep-ex/0612034]

$$\sigma(\lambda_{\gamma} = 0.035)/\sigma^{\rm SM} \simeq 1.11$$

coupling	$error \times 10^{-4}$		
	$\sqrt{s} = 500 \text{GeV}$	$\sqrt{s} = 800 \text{GeV}$	
Δg_1^Z	15.5	12.6	
$\Delta \kappa_{\gamma}$	3.3	1.9	
λ_{γ}	5.9	3.3	
$\Delta \kappa_{\rm Z}$	3.2	1.9	
$\lambda_{\rm Z}$	6.7	3.0	

[Menges, LC-PHSM-2001-022]

LHC vs ILC: \sqrt{s} vs $\Delta \sigma$

How can we measure and constrain anomalous parameters?

direct measurement via $p\overline{p}, pp \rightarrow W^{\pm}\gamma + X$ at Tevatron & LHC

[D0, arXiv:0907.4952], [CDF, arXiv:0912.4500]

<u>radiation zeros</u>: Destructive interference for $q\bar{Q} o gW\gamma$ in the SM for $y^{\star}_{\gamma} pprox 0$

... NNLO / resummed log contributions will significantly affect the jet veto performance.

LHC vs ILC: \sqrt{s} vs $\Delta \sigma$

How can we measure and constrain anomalous parameters?

direct measurement via $p\overline{p}, pp \rightarrow W^{\pm}\gamma + X$ at Tevatron & LHC

[Müller et al. '00]

Shape deviations

 σ^{had} is a highly dynamical quantity: $\sigma^{W\gamma}/\sigma^{W\gamma+jet} = O(1)$ @ LHC

... NNLO / leading log contributions will significantly affect the jet veto performance at the LHC.

Status of charged anomalous WWV couplings

	Λ (TeV)	λ_Z	Δg_1^Z	$\Delta \kappa_{\gamma}$
Expected	1.5	(-0.05, 0.07)	(-0.09, 0.17)	(-0.23, 0.31)
Observed	1.5	(-0.16, 0.16)	(-0.24, 0.34)	(-0.63, 0.72)
Expected	2.0	(-0.05, 0.06)	(-0.08, 0.15)	(-0.20, 0.27)
Observed	2.0	(-0.14, 0.15)	(-0.22, 0.30)	(-0.57, 0.65)

[CDF, arXiv:0912.4500]

Parameter	Minimum	68% C.L.	95% C.L.
$\Delta \kappa_{\gamma}$	0.07	[-0.13, 0.23]	[-0.29, 0.38]
Δg_1^Z	0.05	[-0.01, 0.11]	[-0.07, 0.16]
λ	0.00	[-0.04, 0.05]	[-0.08, 0.08]

[D0, arXiv:0907.4952]

Parameter	68% C.L.	95% C.L.
g_1^{Z}	$0.991\substack{+0.022\\-0.021}$	[0.949, 1.034]
κ_{γ}	$0.984^{+0.042}_{-0.047}$	[0.895, 1.069]
λ_{γ}	$-0.016^{+0.021}_{-0.023}$	[-0.059, 0.026]

[ALEPH, DELPHI, L3, OPAL, arXiv:hep-ex/0612034]

Turning the vetoed contribution into an additional measurement

[Campanario, CE, Spannowsky '10], [Campanario, CE, Spannowsky, Zeppenfeld, '09]

Numerical calculation, implementation and checks

- Catani-Seymour dipole subtraction
- semi-automized FORTRAN code set up
- cross & gauge checks

- optimization, cache systems
- redundant calculations, ...

Turning the vetoed contribution into an additional measurement

[Campanario, CE, Spannowsky '10], [Campanario, CE, Spannowsky, Zeppenfeld, '09]

• differential QCD correction necessary to reach quantitative results from $d\sigma/dp_T^{\gamma}$ for optimized cuts

Is this of any help?

• W+jets background negligible to first approximation

jet fakes $\gamma \ll 10^{-5}$ for large $p_T^{\gamma} \ge 100 \text{ GeV}$

[Escalier et al. , ATL-PHYS-PUB-2005-018]

binned log-likelihood analysis, "simple hypothesis test" à la LEPHWG

[Barate et al. '03]

 include perturbative shape uncertainty of the SM hypothesis as a nuisance parameter and compute confidence levels [CE, Spannowsky, in progress]

Summary

- LEP's legacy implies a serious challenge for TGC searches at the LHC, Tevatron (direct) bounds are comparable
- LHC's energy bump will allow us to further constrain TGCs, however limits will be set by intrinsic uncertainties and our understanding of QCD (jet energy scales, perturbative uncertainty, ...)
- one jet-inclusive contribution has a residual dependence on anomalous couplings we can use
- sensitivity at a new level is predominantly ILC business