Calorimeter test beam needs

Felix Sefkow

ALCPG 11 Eugene, OR, March 19-23, 2011

- General issues
- Projects
- Near and far future

Activities

	ILD	SID											
Vertex	Vertex R&D Groups												
Tracking	LC-TPC		SiD - Si										
	SILC												
ECAL	CALICE	SiD - EM	TA [read										
HCAL		dout											
Coil	ILD – Coil	SiD – Coil											
Muon	ILD - μ SiD - μ												
Forward	FCAL												
Testbeams	CERN – DESY – FNAL – SLAC												

IID

General remarks

- Extensive review and planning at LC test beam workshops at Fermilab Jan 2007 and LAL Nov 2009
 - written document, here short update
- Goals are two-fold
 - test the new technologies, performance, operational experience
 - acquire large physics data sets for test and development of hadron shower simulation and PFA reconstruction
- Consequently
 - large set-ups
 - complex installations with multiple sub-detectors
 - trigger, tracking, particle ID, ECAL, HCAL, tail catcher
 - large phase space of particle energies and types
 - large data sets
 - large running times (rate limitations)

Typical installation: WHCAL

Typical schedule: DHCAL

• (1st test beam was November 2010)

2nd test beam: Broadband muons for calibration

Calorimeter not rotated Trigger with 2 x (1 x 1 m² Scintillator paddles)

Energy scans (separation of positrons and pions offline using Cerenkov)

Calorimeter not rotated Into center of calorimeter Trigger with coincidence of 2 x (19 x 19 cm² Scintillator counter)

1, 2, 4, 6, 8, 12, 32, 40, 48, 60, 66 GeV/c

Will start 4 GeV/c run on Friday

Have been offered an extra week. Will most likely accept...

3rd test beam: April 2011 (ECAL + DHCAL + RPC-TCMT)

4th test beam: June 2011 (DHCAL + RPC-TCMT)

Technologies

Score card

- Completed:
 - CALICE SiW ECAL, Scint W ECAL, Scint Fe AHCAL
- Ongoing:
 - CALICE Scint W AHCAL, RPC Fe DHCAL
- Underway:
 - CALICE RPC Fe SDHCAL, W DHCAL
 - SiD SiW ECAL
- Future:
 - CALICE 2nd generation Si/Scint W ECAL, Scint W/Fe HCAL
- Ongoing, underway and in future:
 - individual or few layer tests with all technologies
 - GEMs, micormegas
 - 2nd generation CALICE ECAL, scint HCAL
 - funding driven

ECAL plans: Si & Scint

Tests of first layer in 2011 @ DESY DAQ system, previous ASIC (SPIROC2), si sensor Hardware-level tests – low energy electron beam

Test with SKIROC2 chip 1st half 2012 (@ DESY ?) Hardware-level tests – low energy electron beam

Multi-layer tests end 2012, 2013 (@ CERN ?) Muons for calibration Electrons with wide energy range

Si/W ECal R&D Collaboration

M. Breidenbach, D. Freytag, N. Graf, R. Herbst, G. Haller, J. Jaros, T. Nelson *SLAC National Accelerator Center*

> J. Brau, R. Frey, D. Strom, P. Radloff (grad student), undergraduates *U. Oregon*

B. Holbrook, R. Lander, M. Tripathi, M. Woods (grad student) UC Davis

- KPiX readout chip
- downstream readout
- mechanical design and integration
- detector development
- readout electronics

- cable development
- bump bonding

Test beam for Silicon-Tungsten R&D test beam module

<u>R&D project goal</u>: Produce full-depth (30 layer) module which uses the technologies for a full LC ECal.

- 1024-channel KPiX chips (30)
 - in hand, testing
- 1024 pixel silicon sensors (30)
 - in hand
- KPiX bump-bonded to Si sensors
 - in progress
- Tungsten
 - in hand
- The test module is 15cm x 15cm x 30 layers; 30 short readout cables carrying one digitized data stream
- Should be ready to characterize in a test beam ~ summer 2011

test beam requirements and plans

- Initial test beam studies: An electron beam like that which should be starting up at SLAC would be ideal:
 - Small number of (simultaneous) electrons per bunch:
 - zero,1,2,... electrons per bunch
 - 5-10 GeV or more
 - Well localized and controllable beam
 - LC-like time structure (for KPiX)

- Our test module and the SLAC test beam are both due to be ready Summer 2011
- Would assume prototype to be incorporated in a beam with hadrons with and without an HCal prototype at a later stage
 - The initial hadron shower in such a highly-segmented detector is possibly interesting in itself and also in comparison to hadron shower simulation codes

HCAL plans

- Beyond 2011: to be discussed
- Certainly: SDHCAL, combined with ECAL
- Available structures:
 - DESY Fe stack and stage, at FNAL till end 2011
 - CERN W stack, 40 layers in 2011
 - CIEMAT Fe structure
- CALICE and SiD ECALs

11

CERN schedule 2011 (not final!)

19-Mar-2011

2011 SPS Fixed Target Programme

Version 1.0

Colour code: blue (dark shading) = not yet allocated ; yellow (light shading) = not allocatable or Machine Development

		P1 W F		AL ^{P2}			9	SDH		AL.			P4		SD	Н	CA	▲	→	V	V Ha	CAL
	35 35				₃₅ Micro				omegas					35				34				
	26 Apr		\	31 May		5 Jul			9 Aug					13 Sep			18 Oct					
	31 May			5 Jul		r 9 Aug			13 Sep					18 Oct				21 Nov				
T2 -H2	NA Setup		NA61 TR	CA SD <mark>H</mark>	LICE <mark>-</mark> CAL	·	CMS PLT	CMS CAL	S N D ₽	NA <mark>61</mark> Protons		NA6	61-Pro	otons	5	NA6 Proto	CM SiE	I <mark>S</mark> CREAI	M CMS CALO	CN CA	S _{NUCLEO}	NA61
	4	22	10	0 2	<mark>2</mark> 5		10	14		11V			35			6	14	1 9	6	1) 1 <mark>0</mark>	14
T2 -H4	NA ^{Setup}	H4IRRAD 22	CMS ECAL	H4RRAD	ALICE PIDRICH	RD51	рнотас 9	H4IRRAD			RI 1	D51	NA63	3 s	ALET	PANDA	SOIPIX	PEBS 12	F <mark>A</mark> IR	RD5 7	CMS LHC ECAL 7	14
T4 -H6	NA Setup	silc NA62 STRAW	MONOPIX	ALICE C SPD F	CERF	RD42	DEPFET RD42	APPS AMMEGAS	ATLAS ALIBAVA	ABCM RD42	A -	IDA TK	silC	ATLAS	ATLAS BCM PPS	BELLI ARICI	SuperB	ATLAS BELLE		N	A62 MEDIPL	、 14
T4 -H8	4 NA Setup 4	ATLAS IBL 22	LHCb A	RPC LH 1 2019-04 7 ⁰ 10	G Cb ICE) 6	COHEREN 6	TOTEM R UA9 6	7 12 D50 DRI ARPC	EAM A3DSi	AMDT Astgc 8	AMD AstG	TARPC	ARPC A3DSi 7	тотем UA9 7	7 UA9 8	CAL	LICE 3	/ / / LHCb 16	CALICE	CAL	ICE DREAI 3 7	UA9 IONS 14
T4 -P0	NA ^{Setup}	22		0 35				35					35				35				NA6 <mark>2</mark> 14	14
T6 -M2	NA Setup	COMPASS		COMPA	ss		COMPASS			COMPASS				COMPASS			COMPASS		14			
	4	22		0 35				35					35					35			20	14
		CNGS		CNGS	5			CNG	iS				CNG	S			(NGS			CNG	i <mark>S</mark>
27		<mark>3</mark> 5		0 35				35					<mark>3</mark> 5					<mark>3</mark> 5			<mark>3</mark> 4	

ALCPG 11 - Calorimeter test beam needs

Felix Sefkow Eugene, March 21, 2011

Future

- Large scale test beams will continue
- Technolgical 2nd generation prototypes need to undergo full system tests
- Special issues
 - power gating, requires magenets
 - ILC like beam structure: interesting reality test
- Integration with large tracking systems
 - DAQ and software system integration necessary at some stage
 - physics potential very limited

Dual readout

- Total absorption: small tests with crystals and SiPMs
- DREAM and SuperDREAM:
 - 4-6 weeks per year
 - electrons and hadrons, 3-200, 3-350 GeV

16

Conclusion

- Calorimeter test beams at large scale will continue to present high demand to test beam facilities over the next 4 years
- Many smaller tests in addition
- SLAC facility highly welcome
 - beam structure
 - increased emphasis on ECAL in near future

Back-up slides

Future data taking

Scheduled runs

April 2011

Combined run with CALICE Silicon-Tungsten ECAL

June 2011

DHCAL + RPC_TCMT standalone High energy run (32,40,48,60,66 GeV/c)

Additional runs (not yet scheduled)

Fall 2011/Winter 2012

DHCAL with Tungsten absorber plates (from CERN) + RPC_TCMT

2012 or 2013

DHCAL without absorber plates (only 4 mm Fe/Cu covers) Tertiary beam at 0.2 - 2 GeV/c

- Phase I (Through late 2011) → Completion of 30cm x 30cm characterization and DCAL chip integration
 - Perform beam test with 30cm x 30cm double GEM chambers, one with KPiX9 and two with DCAL
 - Completion of 33cmx100cm large foil evaluation
 - TGEM chamber beam tests at CERN

- Phase I (Through late 2011) → Completion of 30cm x 30cm characterization and DCAL chip integration
 - Perform beam test with 30cm x 30cm double GEM chambers, one with KPiX9 and two with DCAL
 - Completion of 33cmx100cm large foil evaluation
 - TGEM chamber beam tests at CERN
- Phase II (late 2011 early 2013): 33cm x 100cm unit chamber development and characterization
 - Begin construction of 2 unit 100cmx33cm chambers, one with kPiX and one with DCAL
 - Bench test with sources and cosmic rays and beam test
 - Construction of 100cmx100cm plane

- Phase I (Through late 2011) → Completion of 30cm x 30cm characterization and DCAL chip integration
 - Perform beam test with 30cm x 30cm double GEM chambers, one with KPiX9 and two with DCAL
 - Completion of 33cmx100cm large foil evaluation
 - TGEM chamber beam tests at CERN
- Phase II (late 2011 early 2013): 33cm x 100cm unit chamber development and characterization
 - Begin construction of 2 unit 100cmx33cm chambers, one with kPiX and one with DCAL
 - Bench test with sources and cosmic rays and beam test
 - Construction of 100cmx100cm plane
- Phase III (Early 2013 mid 2014): 100cmx100cm plane construction
 - Construct 6 unit chambers with DCAL for two 100cmx100cm planes
 - Characterize 100cmx100cm planes

- Phase I (Through late 2011) → Completion of 30cm x 30cm characterization and DCAL chip integration
 - Perform beam test with 30cm x 30cm double GEM chambers, one with KPiX9 and two with DCAL
 - Completion of 33cmx100cm large foil evaluation
 - TGEM chamber beam tests at CERN
- Phase II (late 2011 early 2013): 33cm x 100cm unit chamber development and characterization
 - Begin construction of 2 unit 100cmx33cm chambers, one with kPiX and one with DCAL
 - Bench test with sources and cosmic rays and beam test
 - Construction of 100cmx100cm plane
- Phase III (Early 2013 mid 2014): 100cmx100cm plane construction
 - Construct 6 unit chambers with DCAL for two 100cmx100cm planes
 - Characterize 100cmx100cm planes
- Phase III (Mid 2014 late 2015): 100cm x 100cm plane GEM DHCAL performances in the CALICE stack
 - Complete construction of five 100cm x 100cm planes inserted into existing CALICE calorimeter stack and run with either Si/W or Sci/W ECALs, and RPC or other technology planes in the remaining HCAL

(3) Project roadmap

From small chambers to a technological HCAL prototype

2008-09

Caracterisation of small size chambers Hit efficiency > 97 % with non-uniformity of 1%, multiplicity < 1.1

2010

Fabrication and test of first 1 m² prototype with HARDROC2 ASIC Successful operation with power-pulsing in muon beam

Also tested inside W-structure:

→ Development of AHCAL/MICROMEGAS synchronisation

2011-...

877.5

12 16 20

Participation in the CALICE DAQ v2 effort

Fabrication of more prototypes with MICROROC ASIC

Test beam: standalone and inside CALICE steel or W structure

Pedestals & charge response of new ASIC MICROROC 882.0 881.5 881.0 880.5 1 fC test charges 880.0 detected on all channels 879.5 879.0 878.5 878.0

24 28 32 36 40 44

48 52 56 60 Sampling of showers with 1 cm² granularity Hit profile -10 GeV/c hadrons layer 31

Joined W-AHCAL test in Nov 2010 PS/T9

220

200

180

160

140

120

100

